Logarithmic Equation

Algebra Level 3

If the sum of roots of the equation ( x + 1 ) = 2 log 2 ( 2 x + 3 ) 2 log 4 ( 1980 2 x ) (x+1) = 2\log_2 (2^x+3)-2\log_4(1980-2^{-x}) is log β α \log_\beta \alpha , find α + 2 β \alpha+2\beta .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 16, 2018

( x + 1 ) = 2 log 2 ( 2 x + 3 ) 2 log 4 ( 1980 2 x ) = 2 log 2 ( 2 x + 3 ) 2 × log 2 ( 1980 2 x ) log 2 4 = 2 log 2 ( 2 x + 3 ) log 2 ( 1980 1 2 x ) = log 2 ( ( 2 x + 3 ) 2 1980 1 2 x ) \begin{aligned} (x+1) & = 2\log_2(2^x+3)-2\log_4(1980-2^{-x}) \\ & = 2\log_2(2^x+3)-2\times \frac {\log_2(1980-2^{-x})}{\log_2 4} \\ & = 2\log_2(2^x+3) - \log_2 \left(1980-\frac 1{2^x}\right) \\ & = \log_2 \left(\frac {(2^x+3)^2}{1980-\frac 1{2^x}}\right) \end{aligned}

2 x ( 2 x + 3 ) 2 1980 ( 2 x ) 1 = 2 x + 1 ( 2 x + 3 ) 2 = 2 ( 1980 ( 2 x ) 1 ) 2 2 x + 6 ( 2 x ) + 9 = 3960 ( 2 x ) 2 2 2 x 3954 ( 2 x ) + 11 = 0 \begin{aligned} \implies \frac {2^x(2^x+3)^2}{1980(2^x)-1} & = 2^{x+1} \\ \left(2^x+3\right)^2 & = 2\left(1980(2^x)-1\right) \\ 2^{2x} + 6(2^x) + 9 & = 3960(2^x) - 2 \\ 2^{2x} - 3954(2^x) + 11 & = 0 \end{aligned}

Let the roots of x x be a a and b b . Then by Vieta's formula , we have 2 a × 2 b = 2 a + b = 11 2^a \times 2^b = 2^{a+b} = 11 a + b = log 2 11 \implies a+b = \log_2 11 . Therefore, α + 2 β = 11 + 2 × 2 = 15 \alpha + 2\beta = 11+2 \times 2 = \boxed{15} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...