Logarithmic fever

Algebra Level 3

log 3 4 ( log 8 ( x 2 + 7 ) ) + log 1 2 ( log 1 4 1 x 2 + 7 ) = 2 \large \log_\frac{3}{4}\left(\log_8(x^{2}+7)\right)+ \log_\frac{1}{2} \left(\log_\frac{1}{4}\frac{1}{x^{2}+7} \right) =-2

Find the positive value of x x for which the equation above holds true.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

log 3 4 ( log 8 ( x 2 + 7 ) ) + log 1 2 ( log 1 4 ( x 2 + 7 ) 1 ) = 2 Let u = x 2 + 7 log 3 4 ( log 8 u ) + log 1 2 ( log 1 4 u 1 ) = 2 log 3 4 ( log u log 8 ) + log 1 2 ( log u log 4 ) = 2 log 3 4 ( log u 3 log 2 ) + log 1 2 ( log u 2 log 2 ) = 2 Let y = log u log 2 log y log 3 log 3 log 4 + log y log 2 log 1 log 2 = 2 log y log 3 log 3 log 4 log y log 2 + 1 = 2 log 2 ( log y log 3 ) log y ( log 3 log 4 ) = 3 log 2 log 3 log 4 ) ( log 2 log 3 + log 4 ) log y = 3 log 2 log 3 + 6 log 2 2 + log 2 log 3 ( 3 log 2 log 3 ) log y = 2 log 2 ( 3 log 2 log 3 ) log y = 2 log 2 y = 4 log u log 2 = 4 log u = 4 log 2 u = 16 x 2 + 7 = 16 x = 3 for x > 0 \begin{aligned} \log_\frac 34 \left(\log_8 {\color{#3D99F6}(x^2+7)} \right) + \log_\frac 12 \left(\log_\frac 14 {\color{#3D99F6}(x^2+7)}^{-1} \right) & = -2 & \small \color{#3D99F6} \text{Let }u = x^2 + 7 \\ \log_\frac 34 \left(\log_8 {\color{#3D99F6}u} \right) + \log_\frac 12 \left(\log_\frac 14 {\color{#3D99F6}u}^{-1} \right) & = -2 \\ \log_\frac 34 \left(\frac {\log u}{\log 8} \right) + \log_\frac 12 \left(- \frac {\log u}{-\log 4} \right) & = -2 \\ \log_\frac 34 \left(\frac {\log u}{3\log 2} \right) + \log_\frac 12 \left(\frac {\log u}{2\log 2} \right) & = -2 & \small \color{#3D99F6} \text{Let }y = \frac {\log u}{\log 2} \\ \frac {\log y - \log 3}{\log 3 - \log 4} + \frac {\log y - \log 2}{\log 1 - \log 2} & = - 2 \\ \frac {\log y - \log 3}{\log 3 - \log 4} - \frac {\log y}{\log 2} + 1 & = - 2 \\ \log 2 (\log y - \log 3) - \log y (\log 3 - \log 4) & = -3 \log 2 \log 3 - \log 4) \\ (\log 2 - \log 3 + \log 4)\log y & = -3 \log 2 \log 3 + 6\log^2 2 + \log 2 \log 3 \\ (3\log 2 - \log 3)\log y & = 2 \log 2(3\log 2 - \log 3) \\ \log y & = 2 \log 2 \\ \implies y & = 4 \\ \frac {\log u}{\log 2} & = 4 \\ \log u & = 4 \log 2 \\ \implies u & = 16 \\ x^2 + 7 & = 16 \\ \implies x & = \boxed{3} \quad \small \color{#3D99F6} \text{for }x > 0 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...