Logarithmic Geometric Trigonometry

Geometry Level 3

Right triangle A B C ABC has A B C = 9 0 \angle ABC = 90^\circ , B A C = θ \angle BAC=\theta , A C = c AC=c , A B = a AB=a , and B C = b BC=b , where a a , b b , c c , and θ \theta satisfy the system of equations below.

{ a sin ( θ ) + b cos ( θ ) = c 5 log 8 ( a ) + 4 3 log 2 ( b ) + 1 6 log 2 ( c 12 ) = 23 \large \begin{cases} a \sin (\theta) + b \cos (\theta) = c \\ 5 \log_8 (a) + \dfrac 43 \log_2 (b) + \dfrac 16 \log_{\sqrt 2} (c^{12}) = 23 \end{cases}

If the sum of the lengths of the legs of A B C \triangle ABC is k k , determine the value of ( 0.25 k ) 2 k 1 (0.25k)^2-k-1 .


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Nov 27, 2018

Given that

a sin θ + b cos θ = c Note that a = c cos θ and b = c sin θ 2 c sin θ cos θ = c sin ( 2 θ ) = 1 2 θ = 9 0 θ = 4 5 \begin{aligned} a \sin \theta + b \cos \theta & = c & \small \color{#3D99F6} \text{Note that } a = c\cos \theta \text{ and } b = c \sin \theta \\ 2c \sin \theta \cos \theta & = c \\ \sin (2\theta) & = 1 \\ 2 \theta & = 90^\circ \\ \implies \theta & = 45^\circ \end{aligned}

This means that A B C \triangle ABC is an isosceles right triangle, and a = b a=b and c = 2 a c = \sqrt 2 a . Then we have:

5 log 8 a + 4 3 log 2 b + 1 6 log 2 c 12 = 23 5 log 2 a log 2 2 3 + 4 3 log 2 a + 2 log 2 ( 2 a ) = 23 5 log 2 a log 2 2 3 + 4 3 log 2 a + 2 ( log 2 2 + log 2 a ) = 23 5 3 log 2 a + 4 3 log 2 a + 2 ( 1 + log 2 a log 2 2 1 2 ) = 23 3 log 2 a + 2 + 2 log 2 a 1 2 = 23 7 log 2 a = 21 log 2 a = 3 a = 8 \begin{aligned} 5 \log_8 a + \frac 43 \log_2 b + \frac 16 \log_{\sqrt 2} c^{12} & = 23 \\ 5 \frac {\log_2 a}{\log_2 2^3} + \frac 43 \log_2 a + 2 \log_{\sqrt 2} (\sqrt 2a) & = 23 \\ 5 \frac {\log_2 a}{\log_2 2^3} + \frac 43 \log_2 a + 2 \left(\log_{\sqrt 2} \sqrt 2+ \log_{\sqrt 2} a \right) & = 23 \\ \frac 53 \log_2 a + \frac 43 \log_2 a + 2 \left(1 + \frac {\log_2a}{\log_2 2^\frac 12} \right) & = 23 \\ 3 \log_2 a + 2 + \frac {2 \log_2a}{\frac 12} & = 23 \\ 7 \log_2 a & = 21 \\ \log_2 a & = 3 \\ a & = 8 \end{aligned}

Therefore, k = a + b = 16 k=a+b = 16 and ( 0.25 k ) 2 k 1 = 1 (0.25k)^2 - k - 1 = \boxed{-1} .

Yashas Ravi
Nov 26, 2018

Because θ θ is angle B A C BAC , sin ( θ ) = b c \sin(θ) = \frac{b}{c} and cos ( θ ) = a c \cos(θ) = \frac{a}{c} . By substitution into the trigonometric equation, 2 a b = c 2 2ab = c^2 . Using the Pythagorean Theorem, 2 a b = a 2 + b 2 2ab=a^2+b^2 . This simplifies to ( a b ) 2 = 0 (a-b)^2=0 by rearranging, factoring, and the Zero-Product property, so a = b a=b . By the Pythagorean Theorem, c = a 2 c=a√2 .

Simplifying the logarithmic equation yields ( a 5 b 4 c 9 c 3 ) = 8 9 8 9 8 5 (a^5 * b^4 * c^9 * c^3) = 8^9 * 8^9 * 8^5 . Simplifying by substitution, a 9 a 9 a 5 = 8 9 8 9 8 5 a^9 * a^9 * a^5 = 8^9 * 8^9 * 8^5 , so a = b = 8 a=b=8 and c = 8 2 c=8√2 . By substituting a + b = a + a = k = 16 a+b=a+a=k=16 into the expression, the final answer is 1 -1 .

k = a + a = 16 k = a+a = 16

0.25 k 2 2 k 1 = 0.25 ( 1 6 2 ) 2 ( 16 ) 1 = 31 0.25k^{2}-2k-1 = 0.25(16^{2})-2(16)-1 = 31

The answer should be 31 31 .

Adam Sykes - 2 years, 6 months ago

Log in to reply

I fixed it. Thanks for letting me know!

Yashas Ravi - 2 years, 6 months ago
Parth Sankhe
Nov 26, 2018

A trigonometric identity is (for a right triangle) a cos θ + b sin θ = c a\cos \theta + b\sin \theta =c

Comparing that to a sin θ + b cos θ = c a\sin \theta + b\cos \theta =c , we get θ = 45 ° \theta = 45° , and a = b a=b . Hence, c = a 2 c=a√2

Hence, the sum of roots of the equation is c 2 2 a b a = b c 2 a 2 -\frac {\frac {c√2}{2a}}{\frac {b}{a}}=-\frac {bc}{√2 a^2} . Putting in the value of c and b, we get the sum of roots as 1 -1 .

The logarithmic equation is not needed :)

Ok...thanks for letting me know that! I changed it now so the users have to determine the value of the side lengths (I just deleted the quadratic and replaced it with an expression).

Yashas Ravi - 2 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...