Logarithmic inequality

Algebra Level 4

log ( x + 6 3 ) ( log 2 ( x 1 x + 2 ) ) > 0 \log_{\left(\frac{x+6}{3}\right)} \left(\log_{2}\left(\dfrac{x-1}{x+2}\right)\right)>0

If the range of x x satisfying the above inequality is in the form ( a , b ) ( c , d ) (a,b)\cup (c,d) , find a + b + c + d a+b+c+d .


The answer is -16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
Jun 18, 2016
  • Domain \quad \text{ Domain }

f ( x ) = log ( x + 6 3 ) ( log 2 ( x 1 x + 2 ) ) 1 ) log 2 ( x 1 x + 2 ) > 0 log 2 ( x 1 x + 2 ) > log 2 1 x 1 x + 2 > 1 1 x + 2 < 0 x ( , 2 ) f(x) = \log_{\left(\dfrac{x+6}{3}\right)}\left({\log_{2}{\left(\dfrac{x-1}{x+2}\right)} }\right) \\ 1) \quad \log_{2}{\left( \dfrac{x-1}{x+2} \right) } > 0 \implies \log_{2}{\left( \dfrac{x-1}{x+2} \right) } > \log_{2}{1} \\ \quad \dfrac{x-1}{x+2} > 1 \implies \dfrac{1}{x+2}<0 \\ \quad x \in (-\infty,-2)

2 ) x + 6 3 ( 0 , 1 ) ( 1 , ) x + 6 ( 0 , 3 ) ( 3 , ) x ( 6 , 3 ) ( 3 , ) Domain of function ( D f ) = ( 6 , 3 ) ( 3 , 2 ) 2) \quad \dfrac{x+6}{3} \in (0,1)\cup(1,\infty) \\ \quad x+6 \in (0,3) \cup (3,\infty) \\ \quad x \in (-6,-3) \cup (-3,\infty) \\ \quad \text{Domain of function}(D_f) = (-6,-3) \cup (-3,-2)

  • Condition \quad \text{Condition}

log ( x + 6 3 ) ( log 2 ( x 1 x + 2 ) ) > 0 \log_{\left(\dfrac{x+6}{3}\right)}\left({\log_{2}{\left(\dfrac{x-1}{x+2}\right)} }\right)> 0

1 ) x + 6 3 > 1 x ( 3 , ) log ( x + 6 3 ) ( log 2 ( x 1 x + 2 ) ) > log ( x + 6 3 ) 1 log 2 ( x 1 x + 2 ) > 1 x 1 x + 2 > 2 x + 5 x + 2 < 0 x ( 5 , 2 ) x ( 3 , 2 ) 1) \quad \dfrac{x+6}{3} > 1 \implies x \in (-3,\infty) \\ \quad \log_{\left(\dfrac{x+6}{3}\right)}\left({\log_{2}{\left(\dfrac{x-1}{x+2}\right)} }\right)>\log_{\left(\dfrac{x+6}{3}\right)}{1} \\ \quad \log_{2}{\left( \dfrac{x-1}{x+2} \right) } > 1 \\ \quad \dfrac{x-1}{x+2} > 2 \implies \dfrac{x+5}{x+2} < 0 \\ \quad x \in (-5,-2) \\ \quad \implies \boxed{x\in (-3,-2)}

2 ) 0 < x + 6 3 < 1 x ( 6 , 3 ) log ( x + 6 3 ) ( log 2 ( x 1 x + 2 ) ) > log ( x + 6 3 ) 1 log 2 ( x 1 x + 2 ) < 1 x 1 x + 2 < 2 x + 5 x + 2 > 0 x ( , 5 ) ( 2 , ) x ( 6 , 5 ) 2) \quad 0< \dfrac{x+6}{3} < 1 \implies x \in (-6,-3) \\ \quad \log_{\left(\dfrac{x+6}{3}\right)}\left({\log_{2}{\left(\dfrac{x-1}{x+2}\right)} }\right)>\log_{\left(\dfrac{x+6}{3}\right)}{1} \\ \quad \log_{2}{\left( \dfrac{x-1}{x+2} \right) } < 1 \\ \quad \dfrac{x-1}{x+2} < 2 \implies \dfrac{x+5}{x+2} > 0 \\ \quad x \in (-\infty,-5) \cup (-2,\infty) \\ \quad \implies \boxed{x \in (-6,-5)}

Our answer : D f ( ( 6 , 5 ) ( 3 , 2 ) ) ( 6 , 5 ) ( 3 , 2 ) 6 5 3 2 = 16 \text{Our answer : } D_f \cap \left((-6,-5) \cup (-3,-2)\right) \implies \boxed {(-6,-5) \cup (-3,-2)} \\ -6-5-3-2 = \boxed{-16}

Nice solution!

Akshat Sharda - 4 years, 12 months ago

Log in to reply

Thanks 😃 !

Sabhrant Sachan - 4 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...