The Minimum Possible Base For Two Logs

Algebra Level 3

log 5 n 30 5 log 4 n 48 \log_{5n} 30\sqrt{5} \ge \log_{4n} 48

Over the domain n > 1 n > 1 , let M M be the smallest value of n n that satisfies the above inequality.

What is M 3 ? M^3?


The answer is 36.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chan Lye Lee
Feb 16, 2016

log 5 n 30 5 log 4 n 48 30 5 ( 5 n ) log 4 n 48 \log_{5n} 30\sqrt{5} \ge \log_{4n} 48 \Rightarrow 30\sqrt{5} \ge (5n)^{\log_{4n} 48} .

Now 30 5 ( 5 4 × 4 n ) log 4 n 48 = ( 5 4 ) log 4 n 48 ( 4 n ) log 4 n 48 = ( 5 4 ) log 4 n 48 × 48 30\sqrt{5} \ge (\frac{5}{4} \times 4n)^{\log_{4n} 48} =(\frac{5}{4})^{\log_{4n} 48}(4n)^{\log_{4n} 48}= (\frac{5}{4})^{\log_{4n} 48} \times 48 .

This implies that 5 5 8 ( 5 4 ) log 4 n 48 \frac{5\sqrt{5}}{8} \ge (\frac{5}{4})^{\log_{4n} 48} . Note that 5 5 8 = ( 5 4 ) 3 2 \frac{5\sqrt{5}}{8} = (\frac{5}{4})^{\frac{3}{2}} , hence ( 5 4 ) 3 2 ( 5 4 ) log 4 n 48 (\frac{5}{4})^{\frac{3}{2}} \ge (\frac{5}{4})^{\log_{4n} 48} which means that 3 2 log 4 n 48 \frac{3}{2}\ge \log_{4n} 48 .

Thus ( 4 n ) 3 2 48 8 n 3 2 48 n 3 2 6 n 3 36 (4n)^{\frac{3}{2}}\ge 48 \Rightarrow 8 n^{\frac{3}{2}}\ge 48 \Rightarrow n^{\frac{3}{2}}\ge 6 \Rightarrow n^3\ge 36 .

So the minimum value of n 3 n^3 is 36 \color{#3D99F6} {36} .

Neatly done! Upvoted! :)

Priyansh Sangule - 5 years, 1 month ago

Nicely done

Mritunjoy Hazra - 1 month ago
Omar Monteagudo
Jul 26, 2016

I used change of base to find the maximum lower bound, hence M M

Wow, nice technique. I shall remember to try to divide it into parts then simplify. Thanks a lot.

Pil Pinas - 4 years, 8 months ago

Great method!

Laxmi Narayan Bhandari Xth B - 8 months, 3 weeks ago
Tom Van Lier
Feb 25, 2016

Let's change the base to 10 ( so log from now on means l o g 10 log_{10} ).

We get at equality that

l o g ( 30 5 ) l o g ( 5 n ) = l o g ( 48 ) l o g ( 4 n ) \frac{log (30 \sqrt{5})}{log(5n)} = \frac{ log(48)}{log(4n)}

or

l o g ( 30 5 ) . l o g ( 4 n ) = l o g ( 48 ) . l o g ( 5 n ) log(30 \sqrt{5}) . log(4n) = log (48) . log(5n) .

Using the identity that l o g ( a . b ) = l o g ( a ) + l o g ( b ) log(a.b) = log(a) + log(b) , we get

l o g ( 30 5 ) . ( l o g ( 4 ) + l o g ( n ) ) = l o g ( 48 ) . ( l o g ( 5 ) + l o g ( n ) ) log(30 \sqrt{5}) . (log (4) + log(n)) = log (48 ). (log (5) + log(n)) .

Isolating log n, we obtain :

l o g ( n ) = l o g ( 30 5 ) . l o g ( 4 ) l o g ( 48 ) . l o g ( 5 ) l o g ( 48 ) l o g ( 30 5 ) log(n) = \dfrac{ log(30 \sqrt{5}) . log (4) - log (48) . log (5)}{log (48) - log (30 \sqrt{5}) } ,

which gives the solution n 3 = 36 n^3 = 36 , using a pocket calculator.

I tried this but after that I tried to simplify it more and failed.

Laxmi Narayan Bhandari Xth B - 8 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...