Logarithmic Solutions

Algebra Level 2

If log 2 3 = a \log_{2}{3}=a , then find the value of log 0.2 81 \log_{0.2}{81} .

1 1 4 a log 10 2 \dfrac {4a} {\log_{10}{2}} 4 a 1 log 2 10 \dfrac {4a-1} {\log_{2}{10}} 4 a 1 log 2 10 \dfrac {4a} {1-\log_{2}{10}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hung Woei Neoh
May 12, 2016

log 2 3 = a \log_2 3 = a

log 0.2 81 = log 2 81 log 2 0.2 = log 2 3 4 log 2 2 10 = 4 log 2 3 log 2 2 log 2 10 = 4 a 1 log 2 10 \log_{0.2} 81\\ =\dfrac{\log_2 81}{\log_2 0.2}\\ =\dfrac{\log_2 3^4}{\log_2 \frac{2}{10}}\\ =\dfrac{4 \log_2 3}{\log_2 2 - \log_2 10}\\ =\boxed{\dfrac{4a}{1-\log_2 10}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...