Logarithmic Warmup

Algebra Level 3

{ log 4 x = a log 2 y = b x y = 128 x y = 4 \large \begin{cases} \log_4 x = a \\ \log_2 y = b \\ xy = 128 \\ \dfrac xy = 4 \end{cases}

Given the above, find a + b + x + y a+b+x+y to two decimal places.


The answer is 33.03.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Armain Labeeb
Jun 30, 2016

log 4 x = a x = 4 a = 2 2 a \log _{ 4 }{ \quad x } =a\\ \quad \quad \quad x=4^{ a }={ 2 }^{ 2a }

log 2 y = b y = 2 b \log _{ 2 }{ \quad y } =b\\ \quad \quad \quad y={ 2 }^{ b }

Multiply x x by y y :

x y = 2 2 a × 2 b = 2 2 a + b xy=2^{ 2a }\times 2^{ b }=2^{ 2a+b }

Divide x x by y y :

x y = 2 2 a 2 b = 2 2 a b \frac { x }{ y } =\frac { 2^{ 2a } }{ 2^{ b } } =2^{ 2a-b }

Since, x y = 128 xy=128 and x y = 4 \frac { x }{ y }=4 ,

2 2 a + b = 128 = 2 7 2 2 a b = 4 = 2 2 2^{ 2a+b }=128=2^{ 7 }\\ 2^{ 2a-b }=\quad 4 =2^{ 2 }\\

Thus,

2 a + b = 7 ( 1 ) 2 a b = 2 ( 2 ) 2a+b=7\longrightarrow (1)\\2a-b=2\longrightarrow (2)

Adding ( 1 ) (1) to ( 2 ) (2) ,

4 a = 9 a = 2.25 \quad 4a=9\\ \Rightarrow a=2.25\\

Substituting a = 2.25 a=2.25 into ( 1 ) (1) , we get b = 2.5 b= 2.5 .

Since x = 4 a x=4^{ a } and y = 2 b y=2^{ b } ,

a + b + x + y = 2.25 + 2.5 + 4 2.25 + 2 2.5 33.03 a+b+x+y=2.25+2.5+4^{ 2.25 }+2^{ 2.5 }\approx \boxed { 33.03 } \\ _(Correct to 2 dec. places) _

Chew-Seong Cheong
Jun 30, 2016

{ log 4 x = a x = 4 a = 2 2 a log 2 y = b y = 2 b \begin{cases} \log_4 x = a & \implies x = 4^a = 2^{2a} \\ \log_2 y = b & \implies y = 2^b \end{cases}

{ x y = 2 2 a + b = 128 = 2 7 2 a + b = 7 . . . ( 1 ) x y = 2 2 a b = 4 = 2 2 2 a b = 2 . . . ( 2 ) \implies \begin{cases} xy = 2^{2a+b} = 128 = 2^7 & \implies 2a+b = 7 & ...(1) \\ \dfrac xy = 2^{2a-b} = 4 = 2^2 & \implies 2a-b = 2 & ...(2) \end{cases}

( 1 ) + ( 2 ) : 4 a = 9 a = 9 4 ( 1 ) : 9 2 + b = 7 b = 5 2 x = 2 9 2 y = 2 5 2 \begin{aligned} (1)+(2): \quad 4a & = 9 & \implies a = \frac 94 \\ (1): \quad \frac 92 + b & = 7 & \implies b = \frac 52 \\ \implies x & = 2^\frac 92 \\ y & = 2^\frac 52 \end{aligned}

a + b + x + y 33.03 \implies a+b+x+y \approx \boxed{33.03}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...