lo g b ( lo g a b ) lo g a ( lo g b a )
If a = b , which of the following answer choices is equal to the expression above?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
nelson mandela Same. Upvoted : )
lo g b ( lo g a b ) lo g a ( lo g b a ) = lo g a b lo g a ( lo g a b ) lo g a ( lo g a b lo g a a ) = lo g a ( lo g a b ) lo g a ( lo g a b 1 ) lo g a b = lo g a ( lo g a b ) − lo g a ( lo g a b ) lo g a b = − lo g a b
Did the same way upvoted
I went about it the slow way, using extensive change of base. Reading the other solutions below, I now realize that this was totally unnecessary. Still, here you go: The expression in the problem is equal to the following: = lo g b lo g ( lo g a b ) lo g a lo g ( lo g b a ) = lo g b lo g ( lo g a lo g b ) lo g a lo g ( lo g b lo g a ) = lo g b lo g ( lo g b ) − lo g ( lo g a ) lo g a lo g ( lo g a ) − lo g ( lo g b )
Multiply by negative 1. = lo g b lo g ( lo g a ) − lo g ( lo g b ) lo g a lo g ( lo g a ) − lo g ( lo g b ) = − lo g a lo g b = − lo g a b
If anyone wants, please let me know if I made any typos. The L A T E X was a pain to write!
Log in to reply
We need a Python of L A T E X . And I think you could have come up with a much easier solution in the first place.
Log in to reply
I could. But the first way I think of solving a problem is usually the overcomplicated roundabout way. I should have thought of it the way Nelson did, as I've used that method on other problems before.
nice explanation
lo g a ( lo g b a ) = lo g b ( lo g a b ) = lo g lo g b a a 1 lo g lo g a b b 1
Thus,
lo g b ( lo g a b ) lo g a ( lo g b a ) = = = = = lo g lo g b a a lo g lo g a b b lo g lo g b a a lo g ( lo g b a ) − 1 b lo g lo g b a a − lo g lo g b a b − lo g a lo g b − lo g a b
Problem Loading...
Note Loading...
Set Loading...
Consider lo g b a as x. then,
x^-1 = lo g b a .
then, the simplification is,
lo g b x − 1 lo g a x .
= − lo g b x lo g a x .
= lo g a lo g x × lo g x − lo g b .
After cancelling log(x) we get − lo g a b .