Superimposed the wrong way

Algebra Level 3

log a ( log b a ) log b ( log a b ) \large \frac { \log _{ a }{ (\log _{ b }{ a } ) } }{ \log _{ b }{ (\log _{ a }{ b) } } }

If a b a \ne b , which of the following answer choices is equal to the expression above?

( log a b ) (\log _{ a }{ b } ) ( log b a ) (-\log _{ b }{ a } ) ( log a b ) (-\log _{ a }{ b } ) ( log b a ) (\log _{ b }{ a } )

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Nelson Mandela
Jul 17, 2015

Consider log b a \log _{ b }{ a } as x. then,

x^-1 = log b a \log _{ b }{ a } .

then, the simplification is,

log a x log b x 1 \frac { \log _{ a }{ x } }{ \log _{ b }{ { x }^{ -1 } } } .

= log a x log b x \frac { \log _{ a }{ x } }{ -\log _{ b }{ { x } } } .

= log x log a × log b log x \frac { \log { x } }{ \log { a } } \times \frac { -\log { b } }{ \log { x } } .

After cancelling log(x) we get log a b -\log _{ a }{ b } .

nelson mandela Same. Upvoted : ) :)

Jessica Wang - 5 years, 11 months ago
Chew-Seong Cheong
Jul 17, 2015

log a ( log b a ) log b ( log a b ) = log a ( log a a log a b ) log a ( log a b ) log a b = log a ( 1 log a b ) log a b log a ( log a b ) = log a ( log a b ) log a b log a ( log a b ) = log a b \begin{aligned} \frac {\log_a {(\log_b {a})}} {\log_b {(\log_a {b})}} & = \frac{\log_a{\left( \frac{\log_a{a}}{\log_a{b}} \right)}} {\frac{\log_a {(\log_a {b})}}{\log_a{b}}} = \frac{\log_a{\left( \frac{1}{\log_a{b}} \right)}\log_a {b}} {\log_a {(\log_a {b})}} \\ & = \frac{-\log_a{\left( \log_a{b} \right)}\log_a {b}} {\log_a {(\log_a {b})}} = \boxed{-\log_a {b}} \end{aligned}

Did the same way upvoted

Ayush Sharma - 5 years, 10 months ago
Hobart Pao
Jul 23, 2015

I went about it the slow way, using extensive change of base. Reading the other solutions below, I now realize that this was totally unnecessary. Still, here you go: The expression in the problem is equal to the following: = log ( log b a ) log a log ( log a b ) log b = \dfrac{\dfrac{\log\left(\log_{b}a\right)}{\log a}}{\dfrac{\log\left(\log_{a}b\right)}{\log b}} = log ( log a log b ) log a log ( log b log a ) log b = \dfrac{\dfrac{\log\left(\dfrac{\log a}{\log b}\right)}{\log a}}{\dfrac{\log \left(\dfrac{\log b}{\log a}\right)}{\log b}} = log ( log a ) log ( log b ) log a log ( log b ) log ( log a ) log b = \dfrac{\dfrac{\log\left(\log a\right)-\log\left(\log b\right)}{\log a}}{\dfrac{\log\left(\log b\right) - \log\left(\log a\right)}{\log b}}

Multiply by negative 1. = log ( log a ) log ( log b ) log a log ( log a ) log ( log b ) log b = \dfrac{\dfrac{\log\left(\log a\right)-\log\left(\log b\right)}{\log a}}{\dfrac{\log\left(\log a\right) - \log\left(\log b\right)}{\log b}} = log b log a = -\dfrac{\log b}{\log a} = log a b = -\log_{a} b

If anyone wants, please let me know if I made any typos. The LaTeX \LaTeX was a pain to write!

Hobart Pao - 5 years, 10 months ago

Log in to reply

We need a Python of LaTeX \LaTeX . And I think you could have come up with a much easier solution in the first place.

Patrick Engelmann - 5 years, 10 months ago

Log in to reply

I could. But the first way I think of solving a problem is usually the overcomplicated roundabout way. I should have thought of it the way Nelson did, as I've used that method on other problems before.

Hobart Pao - 5 years, 10 months ago

nice explanation

Sushil Kumar - 5 years, 10 months ago
Ikkyu San
Jul 17, 2015

log a ( log b a ) = 1 log log b a a log b ( log a b ) = 1 log log a b b \begin{aligned}\begin{aligned}\log_a{(\color{#3D99F6}{\log_ba})}=&\ \dfrac1{\log_{\color{#3D99F6}{\log_ba}}a}\\\log_b{(\color{#D61F06}{\log_ab})}=&\ \dfrac1{\log_{\color{#D61F06}{\log_ab}}b}\end{aligned}\end{aligned}

Thus,

log a ( log b a ) log b ( log a b ) = log log a b b log log b a a = log ( log b a ) 1 b log log b a a = log log b a b log log b a a = log b log a = log a b \begin{aligned}\begin{aligned}\dfrac{\log_a{(\color{#3D99F6}{\log_ba})}}{\log_b{(\color{#D61F06}{\log_ab})}}=&\ \dfrac{\log_{\color{#D61F06}{\log_ab}}b}{\log_{\color{#3D99F6}{\log_ba}}a}\\=&\ \dfrac{\log_{(\color{#3D99F6}{\log_ba})^{-1}}b}{\log_{\color{#3D99F6}{\log_ba}}a}\\=&\ \dfrac{-\log_{\color{#3D99F6}{\log_ba}}b}{\log_{\color{#3D99F6}{\log_ba}}a}\\=&\ -\dfrac{\log{b}}{\log{a}}\\=&\ \boxed{-\log_ab}\end{aligned}\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...