Solve for x : 4 lo g 2 x = 4 − lo g x 2
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
4 lo g 2 x lo g 2 4 lo g x 4 lo g 2 x 4 lo g 2 x − 4 lo g 2 lo g x + lo g 2 2 ( 2 lo g x − lo g 2 ) 2 ⟹ lo g x 2 x 2 x = 4 − lo g x 2 = 4 − lo g x lo g 2 = 4 lo g 2 lo g x − lo g 2 2 = 0 = 0 = lo g 2 = 2 = 2 ≈ 1 . 4 1 Converting to the common log base As x > 1 , multiply both sides by lo g 2 lo g x Note that x > 1
Also to note that x = 1 as l o g x ( 2 ) will be undefined
I mean it should be written before multiplying by l o g ( 2 ) l o g ( x ) .
Log in to reply
Then the question itself is undefined to start with. Because lo g 1 a is undefined.
Using logarithm properties, we can switch the base of one of these logs (I chose the one on the left, but switching the other will lead to the same conclusion): 4 lo g 2 x = 4 − lo g x 2 ⇒ lo g x 2 4 = 4 − lo g x 2 ( Property: lo g a b ≡ lo g b a 1 )
We can tidy things up a bit by multiplying by lo g x 2 on both sides: lo g x 2 4 = 4 − lo g x 2 ⇒ 4 = 4 lo g x 2 − ( lo g x 2 ) 2 ⇒ ( lo g x 2 ) 2 − 4 lo g x 2 + 4 = 0
This looks like a quadratic equation! We can factorise this and solve for lo g x 2 before solving for x itself: ( lo g x 2 ) 2 − 4 lo g x 2 + 4 = 0 ⇒ ( lo g x 2 − 2 ) ) 2 = 0 ⇒ lo g x 2 = 2
Now that we know what lo g x 2 is, solving for x is easy: lo g x 2 = 2 ⇒ x = 2
I don't know the relevant properties of logarithms, so I replaced some numbers.
Let a = lo g 2 x and b = lo g x 2 , so we can get x = 2 a and 2 = x b .
Substitute x = 2 a into 2 = x b to get 2 = 2 a b , so a b = 1 .
Then change the title to 4 a = 4 − b , and solve the system of equations to get b = 2 , so
x = 2 ≈ 1 . 4 1 .
That's exactly what i did.. ;)
We can rewrite as follows: 4 a = 4 − a 1 4 a + a 1 = 4 4 a 2 + 1 = 4 a 4 a 2 − 4 a + 1 = 0 ⟹ a = 2 1 ⟹ lo g 2 ( x ) = 2 1 x = 2
Good solution! It is nice to tidy it up with letting the log be known as a ! Upvote!
Problem Loading...
Note Loading...
Set Loading...
You may use the fact that lo g a b = lo g b a 1
4 lo g 2 x = 4 − lo g x 2 ⇒ 4 U = 4 − U 1 ⇒ 4 U 2 = 4 U − 1 ⇒ 4 U 2 − 4 U + 1 = 0 ⇒ ( 2 U − 1 ) 2 = 0 ⇒ U = 2 1 ⇒ lo g 2 x = U = 2 1 ⇒ lo g 2 x = lo g 2 2 2 1 ⇒ x = 2