Find the value of a if 1 2 lo g 1 2 = 3 a lo g 3 + 2 a lo g 8
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
1 2 lo g 1 2 = 1 2 × ( lo g 3 × lo g 4 )
→ 1 2 lo g 3 + 1 2 lo g 4 = 3 a lo g 3 + 2 a lo g 8
→ ( 1 2 − 3 a ) lo g 3 = ( 6 a − 2 4 ) lo g 2
Because f ( a ) = ( 1 2 − 3 a ) lo g 3 is monotonically decreasing function and g ( a ) = ( 6 a − 2 4 ) lo g 2 is monotonically increasing function
So there is only 1 unknown in this equation.
Please draw 2 graphs of f(x) and g(x) and look at these graphs: The answer is a = 4
Hey yo,
as for 12 log 12 = 3a log 3 + 2a log 8
log 12^(12) = log ^(3a) + log 8^(2a)
log 12^(12) = log [ 3^(3a) x 8^(2a)]
12^(12) = 3^(3a) x 8^(2a)
(3 x 4)^12 = 3^(3a) x 8^(2a)
[3^(12)][4^(12)] = 3^(3a) x 8^(2a)
by comparison,
3^(3a) = 3^(12)
3a = 12
a = 12/3 = 4
or
4^(12) = 8^(2a)
2^(24) = 2^(6a)
6a = 24
a = 4
therefore,the answer is a = 4 ,
thanks...
12^12 = 3^3a . 8^2a --> 3^12. 2^24 = 3^3a . 2^6a --> So, a is 4.
Problem Loading...
Note Loading...
Set Loading...
1 2 lo g 1 2 = 3 a lo g 3 + 2 a lo g 8
→ 1 2 lo g 1 2 = 3 a lo g 3 + 6 a lo g 2
→ 1 2 lo g 1 2 = 3 a lo g 3 + 3 a lo g 4
→ 1 2 lo g 1 2 = 3 a lo g 1 2
→ 1 2 = 3 a − − − − − − − − − − − − − − − − − − ( lo g 1 2 = 0 )
→ a = 4