Logarithms

Calculus Level 3

S n = i = 1 n 1 4 i 2 2 i \large S_{n}=\sum_{i=1}^{n}\frac{1}{4i^{2}-2i}

For S n S_n as defined above, find 100 lim n S n \displaystyle \left \lfloor 100 \lim_{n \to \infty}S_n \right \rfloor .

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 69.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki: Maclaurin Series

S n = i = 1 n 1 4 i 2 2 i = i = 1 n 1 2 i ( 2 i 1 ) = i = 1 n ( 1 2 i 1 1 2 i ) = 1 1 2 + 1 3 1 4 + + 1 2 n 1 1 2 n \begin{aligned} S_n & = \sum_{i=1}^n \frac 1{4i^2-2i} \\ & = \sum_{i=1}^n \frac 1{2i(2i-1)} \\ & = \sum_{i=1}^n \left( \frac 1{2i-1} - \frac 1{2i} \right) \\ & = 1 - \frac 12 + \frac 13 - \frac 14 + \cdots + \frac 1{2n-1} - \frac 1{2n} \end{aligned}

lim n S n = 1 1 2 + 1 3 1 4 + By Maclaurin series: ln ( 1 + x ) = k = 1 ( 1 ) k + 1 x k k ; putting x = 1 = ln 2 \begin{aligned} \lim_{n \to \infty} S_n & = 1 - \frac 12 + \frac 13 - \frac 14 + \cdots & \small \color{#3D99F6} \text{By Maclaurin series: } \ln(1+x) = \sum_{k=1}^\infty \frac {(-1)^{k+1}x^k}k \text{; putting }x=1 \\ & = \ln 2 \end{aligned}

100 lim n S n = 100 ln 2 = 69 \implies \displaystyle \left \lfloor 100 \lim_{n \to \infty} S_n \right \rfloor = \left \lfloor 100 \ln 2 \right \rfloor = \boxed{69}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...