lo g 3 2 lo g ( x − 7 x − 3 ) + 1 = lo g 3 lo g ( x − 1 x − 3 )
How many solutions does the equation above have?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
log (x - 7) being undefined is not the problem with x=4. The real problem is that the fraction
x − 7 x − 3 is negative when x=4, hence lo g ( x − 7 x − 3 ) is undefined.
If we had e.g. (x - 8) in the numerator instead of (x - 3), then the fraction (of two negative numbers) would be positive, so the log of the fraction would be defined at x=4.
Problem Loading...
Note Loading...
Set Loading...
lo g 3 2 lo g ( x − 7 x − 3 ) + 1 2 lo g ( x − 7 x − 3 ) + lo g 3 2 lo g ( x − 3 ) − 2 lo g ( x − 7 ) + lo g 3 lo g ( x − 3 ) + lo g ( x − 1 ) + lo g 3 3 ( x − 3 ) ( x − 1 ) 3 x 2 − 1 2 x + 9 2 x 2 + 2 x − 4 0 x 2 + x − 2 0 ( x + 5 ) ( x − 4 ) = lo g 3 lo g ( x − 1 x − 3 ) = lo g ( x − 1 x − 3 ) = lo g ( x − 3 ) − lo g ( x − 1 ) = 2 lo g ( x − 7 ) = ( x − 7 ) 2 = x 2 − 1 4 x + 4 9 = 0 = 0 = 0 Multiply both sides by lo g 3
We note that when x = 4 , lo g ( x − 7 x − 3 ) < 0 is undefined. Therefore, the only solution is x = − 5 and the answer is "only 1 negative solution" .