An algebra problem by Aakhyat Singh

Algebra Level 3

log a ( log b a ) log b ( log a b ) = ? \large \frac {\log_a(\log_b a)}{\log_b(\log_a b)} = \ ?

log b a \log_b a log a b -\log_a b log b a -\log_b a log a b \log_a b

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 24, 2017

Let { x = log b a a = b x y = log a b b = a y \begin{cases} x = \log_b a & \implies a = b^x \\ y = \log_a b & \implies b = a^y \end{cases} a = b x = a x y \implies a = b^x = a^{xy} x y = 1 \implies xy = 1 and x = 1 y x = \dfrac 1y .

Now, we have:

log a ( log b a ) log b ( log a b ) = log a x log b y = log a 1 y log b y = log a y log b y = log a y log a y log a b = log a b \begin{aligned} \frac {\log_a (\log_b a)}{\log_b (\log_a b)} & = \frac {\log_a x}{\log_b y} = \frac {\log_a \frac 1y}{\log_b y} = \frac {-\log_a y}{\log_b y} = - \frac {\log_a y}{\frac {\log_a y}{\log_a b}} = \boxed{-\log_a b} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...