Logarithms and 2018!

Algebra Level 2

If n = 2018 ! n = 2018! then find the value of

1 log 2 n + 1 log 3 n + 1 log 4 n + + 1 log 2018 n \frac{1}{\log_{2}n}+\frac{1}{\log_{3}n}+\frac{1}{\log_{4}n}+\cdots+\dfrac{1}{\log_{2018}n}


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 21, 2018

S = 1 log 2 n + 1 log 3 n + 1 log 4 n + + 1 log 2018 n where n = 2018 ! = k = 2 2018 1 log k n = k = 2 2018 log k log n = 1 log 2018 ! k = 2 2018 log k = 1 k = 2 2018 log k k = 2 2018 log k = 1 \begin{aligned} S & = \frac 1{\log_2 n} + \frac 1{\log_3 n} + \frac 1{\log_4 n} + \cdots + \frac 1{\log_{2018} n} & \small \color{#3D99F6} \text{where }n = 2018! \\ & = \sum_{k=2}^{2018} \frac 1{\log_k n} \\ & = \sum_{k=2}^{2018} \frac {\log k}{\log n} \\ & = \frac 1{\log 2018!} \sum_{k=2}^{2018} \log k \\ & = \frac 1{\sum_{k=2}^{2018} \log k} \sum_{k=2}^{2018} \log k \\ & = \boxed{1} \end{aligned}

Nice approach

CookingMade Funn - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...