Logarithms and Trigonometric Functions

Geometry Level 3

It is known that sin x \sin x and cos x \cos x are both positive but are not equal. If log sin x cot 2 x + log cos x tan x = 0 \log_{\sin x} \cot^2 x + \log_{\cos x} {\tan x}=0 , find the value of cos 4 x + cos 2 x + 1 \cos^4 x + \cos^2 x +1 .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jun 15, 2016

Use log a 2 b = 2 log b a \color{#20A900}{\small{\log_{a^2} b=\dfrac2{\log_b a}}} and ( tan x ) 1 = cot x \color{#20A900}{\small{(\tan x)^{-1}=\cot x}} .

2 log sin x cot x log cos x cot x = 0 2\log_{\sin x }\cot x - \log_{\cos x} \cot x=0 2 log cot x sin x 1 log cot x cos x = 0 \implies \dfrac{2}{\log_{\cot x} \sin x}-\dfrac1{\log_{\cot x} \cos x}=0

2 log cot x cos x log cot x cos x log cot x sin x = log cot x sin x log cot x cos x log cot x sin x \implies \dfrac{2\log_{\cot x}\cos x}{\cancel{\log_{\cot x} \cos x\log_{\cot x}\sin x}}=\dfrac{\log_{\cot x}\sin x}{\cancel{\log_{\cot x} \cos x\log_{\cot x}\sin x}} cos 2 x = sin x = 1 cos 2 x \implies \cos^2x =\sin x=\sqrt {1-\cos^2 x} Squaring and rearranging gives: cos 4 x + cos 2 x + 1 = 2 \cos^4x+\cos^2x+1=\boxed 2

Chew-Seong Cheong
Jun 16, 2016

log sin x cot 2 x + log cos x tan x = 0 Changing to a common log base 2 log ( cot x ) log ( sin x ) + log ( tan x ) log ( cos x ) = 0 2 ( log ( cos x ) log ( sin x ) ) log ( sin x ) + log ( sin x ) log ( cos x ) log ( cos x ) = 0 2 log ( cos x ) log ( sin x ) 2 + log ( sin x ) log ( cos x ) 1 = 0 Multiplying log ( cos x ) log ( sin x ) throughout 2 ( log ( cos x ) log ( sin x ) ) 2 3 log ( cos x ) log ( sin x ) + 1 = 0 ( 2 log ( cos x ) log ( sin x ) 1 ) ( log ( cos x ) log ( sin x ) 1 ) = 0 log ( cos x ) log ( sin x ) = 1 2 Since sin x cos x cos 2 x = sin x \begin{aligned} \log_{\sin x} \cot^2 x + \log_{\cos x} {\tan x} & = 0 \quad \quad \small \color{#3D99F6}{\text{Changing to a common log base}}\\ \frac {2\log (\cot x)}{\log (\sin x)} + \frac {\log (\tan x)}{\log (\cos x)} & = 0 \\ \frac {2(\log (\cos x) - \log (\sin x))}{\log (\sin x)} + \frac {\log (\sin x) - \log (\cos x)}{\log (\cos x)} & = 0 \\ 2\frac {\log (\cos x)}{\log (\sin x)} - 2 + \frac {\log (\sin x)}{\log (\cos x)} - 1 & = 0 \quad \quad \small \color{#3D99F6}{\text{Multiplying } \frac {\log (\cos x)}{\log (\sin x)} \text{ throughout}} \\ 2 \left(\frac {\log (\cos x)}{\log (\sin x)}\right)^2 - 3\frac {\log (\cos x)}{\log (\sin x)} + 1 & = 0 \\ \left(2\frac {\log (\cos x)}{\log (\sin x)} - 1 \right) \left(\frac {\log (\cos x)}{\log (\sin x)} - 1 \right) & = 0 \\ \implies \frac {\log (\cos x)}{\log (\sin x)} & = \frac 12 \quad \quad \small \color{#3D99F6}{\text{Since } \sin x \ne \cos x} \\ \implies \cos^2 x & = \sin x \end{aligned}

cos 4 x + cos 2 x + 1 = sin 2 x + cos 2 x + 1 = 1 + 1 = 2 \begin{aligned} \implies \cos^4 x + \cos^2 x + 1 & = \sin^2 x + \cos^2 x + 1 \\ & = 1 + 1 = \boxed{2} \end{aligned}

Sir, could you please explain why we cannot consider sinx = cosx as a solution ? Thanks.

Tushar Jawalia - 4 years, 11 months ago

Log in to reply

Okay. It's given in the question. Sorry.

Tushar Jawalia - 4 years, 11 months ago

It is given in the problem.

"It is known that sin x \sin x and cos x \cos x are both positive but are not equal."

Chew-Seong Cheong - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...