Logarithm's basics

Algebra Level 3

Find x x if : log 4 8 3 + 1 3 log 2 x 3 = 4 \log_{4}\sqrt[3]{8^{3+\frac{1}{3}\log_{2}{x}}} = 4

If your answer comes as a b a^{b} then submit it as a + b a+b .

N o t e Note : a a must be a positive prime integer.


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Sep 23, 2015

log 4 8 3 + 1 3 log 2 x 3 = 4 8 3 + 1 3 log 2 x 3 = 4 4 ( 2 3 ) 1 3 ( 3 + 1 3 log 2 x ) = 2 8 2 3 + 1 3 log 2 x = 2 8 3 + 1 3 log 2 x = 8 1 3 log 2 x = 5 log 2 x = 15 x = 2 15 a + b = 17 \begin{aligned} \log_4 \sqrt[3]{8^{3+\frac{1}{3}\log_2{x}}} & = 4 \\ \sqrt[3]{8^{3+\frac{1}{3}\log_2{x}}} & = 4^4 \\ \left( 2^3 \right)^{\frac{1}{3}\left(3+\frac{1}{3}\log_2{x}\right)} & = 2^8 \\ 2^{3+\frac{1}{3}\log_2{x}} & = 2^8 \\ 3+\frac{1}{3}\log_2{x} & = 8 \\ \frac{1}{3}\log_2{x} & = 5 \\ \log_2{x} & = 15 \\ \Rightarrow x & = 2^{15} \\ \\ \Rightarrow a + b = \boxed{17} \end{aligned}

Ikkyu San
Jul 19, 2015

log 4 8 3 + 1 3 log 2 x 3 = 4 log 4 ( 8 3 + 1 3 log 2 x ) 1 3 = 4 log 4 4 log 4 8 1 + 1 9 log 2 x = log 4 4 4 8 1 + 1 9 log 2 x = 4 4 ( 2 3 ) 1 + 1 9 log 2 x = ( 2 2 ) 4 2 3 + 1 3 log 2 x = 2 8 3 + 1 3 log 2 x = 8 1 3 log 2 x = 5 log 2 x = 15 log 2 2 log 2 x = log 2 2 15 x = 2 15 \begin{aligned}\begin{aligned}\log_4\sqrt[3]{8^{3+\frac13\log_2x}}=&\ 4\\\log_4{\left(8^{3+\frac13\log_2x}\right)^{\frac13}}=&\ 4\log_4{4}\\\log_4{8^{1+\frac19\log_2x}}=&\ \log_4{4^4}\\8^{1+\frac19\log_2x}=&\ 4^4\\(2^3)^{1+\frac19\log_2x}=&\ (2^2)^4\\2^{3+\frac13\log_2x}=&\ 2^8\\3+\frac13\log_2x=&\ 8\\\frac13\log_2x=&\ 5\\\log_2x=&\ 15\log_22\\\log_2x=&\ \log_2{2^{15}}\\x=&\ 2^{15}\end{aligned}\end{aligned}

Thus, a + b = 2 + 15 = 17 a+b=2+15=\boxed{17}

Caeo Tan
Jul 16, 2015

log [8^(3+(log x )/3log2)]^(1/3)/log4=4

[8^(3+(log x )/3log2)]^(1/3)=4^4

[8^(3+(log x )/3log2)]=4^12

3+(log x )/3log2=(log 4^12)/(log 8)

3+(log x )/3log2=8

(log x )/3log2=5

(log x)/(log 2)=15

x=2^15

a=2, b=15

Therefore, a+b=17

You should use Latex.

Dev Sharma - 5 years, 2 months ago
Abhiram Rao
Apr 25, 2016

Know exponents? Then you got it. Easy one but well-constructed problem.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...