Logarithms can be naughty

Algebra Level 3

If c = log 30 3 c = \log_{30}3 and d = log 30 5 d = \log_{30}5 , then find the value of

log 30 8 \large \log_{30}8

2 ( 1 + c + d ) 2(1+c+d) 2 ( 1 c d ) 2(1-c-d) 2 ( 1 + c d ) 2(1+c-d) 3 ( 1 + c d ) 3(1+c-d) 3 ( 1 + c + d ) 3(1+c+d) 3 ( 1 c d ) 3(1-c-d)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

log 30 3 + log 30 5 = log 30 15 \log_{30}3 + \log_{30}5 = \log_{30}15

log 30 15 = log 30 ( 30 2 ) = log 30 30 log 30 2 = 1 log 30 2 \Rightarrow \log_{30}15 = \log_{30}\left(\dfrac{30}{2}\right) = \log_{30}30 - \log_{30}2 = 1 - \log_{30}2

c + d = 1 log 30 2 \Rightarrow c + d = 1 - \log_{30}2

log 30 8 = 3 log 30 2 = 3 ( 1 c d ) \log_{30}8 = 3\log_{30}2 = \boxed{3(1-c-d) }

Great solution! Simple!

Ano Maly - 5 years, 11 months ago

Log in to reply

Thanks. Cheers.

Vishwak Srinivasan - 5 years, 11 months ago

Good solution.

Sai Ram - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...