Logarithms' challenger #2

Algebra Level 3

Find the value of: \text{Find the value of:} log a ( 1 1 2 ) + log a ( 1 1 3 ) + log a ( 1 1 4 ) . . . + log a ( 1 1 n ) \log_ {a}{\left(1-\frac{1}{2}\right)}+\log_ {a}{\left(1-\frac{1}{3}\right)}+\log_ {a}{\left(1-\frac{1}{4}\right)}...+\log_ {a}{\left(1-\frac{1}{n}\right)}


This problem is a part of this set .

log a n -\log_{a}{n} 1 n \frac{1}{n} 1 None of these. n 1 n-1 log a n \log_{a}{n}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Raj Rajput
Oct 10, 2015

Sai Aryanreddy
Oct 11, 2015

If anyone found the above screenshots unclear, here is the answer in TeX form:

log a ( 1 1 2 ) + log a ( 1 1 3 ) + log a ( 1 1 4 ) + . . . log a ( 1 1 n ) \log_a(1-\frac{1}{2})+\log_a(1-\frac{1}{3})+\log_a(1-\frac{1}{4})+...\log_a(1-\frac{1}{n})

Reducing the terms inside the logarithms such as 1 1 2 = 1 2 1-\frac{1}{2}=\frac{1}{2} and then combining the logarithms gives:

= log a ( ( 1 2 2 3 3 4 . . . . n 2 n 1 n 1 n ) \log_a((\frac{1}{2}*\frac{2}{3}*\frac{3}{4}*....*\frac{n-2}{n-1}*\frac{n-1}{n})

The numerator and denominator of each fraction will cancel leaving only the 1/n term:

= log a ( 1 / n ) = l o g a ( n 1 ) \log_a(1/n)=log_a(n^{-1}) , which can be rewritten as log a ( n ) -\log_a(n)

Scott Ripperda - 5 years, 8 months ago
Atul Shivam
Oct 17, 2015

Using the property of log ie. l o g ( a ) + l o g ( b ) = l o g ( a b ) log(a)+log(b)= log(ab) this can be reduced to l o g ( n ) -log(n) with base a

Ramiel To-ong
Oct 12, 2015

using mathematical induction,

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...