Logarithms To The Rescue?

Algebra Level 2

Solve for x x :

100 + 2 5 x 1 = 5 2 x 1 \large 100 + 25^{x-1} = 5^{2x-1}


The answer is 2.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Sep 10, 2018

100 + 2 5 x 1 = 5 2 x 1 100 + 2 5 x 25 = 5 2 x 5 Multiply both sides by 25 2500 + 2 5 x = 5 ( 2 5 x ) 4 ( 2 5 x ) = 2500 Divide both sides by 4 2 5 x = 2 5 2 x = 2 \begin{aligned} 100+25^{x-1} & = 5^{2x-1} \\ 100 + \frac {25^x}{25} & = \frac {5^{2x}}5 & \small \color{#3D99F6} \text{Multiply both sides by }25 \\ 2500 + 25^x & = 5(25^x) \\ \implies 4(25^x) & = 2500 & \small \color{#3D99F6} \text{Divide both sides by }4 \\ 25^x & = 25^2 \\ \implies x & = \boxed 2 \end{aligned}

100 + 2 5 x 1 = 5 2 x 1 \large \displaystyle 100 + 25^{x-1} = 5^{2x-1}

100 + ( 5 2 ) x 1 = 5 2 x 1 \large \displaystyle \implies 100 + (5^2)^{x-1} = 5^{2x-1}

100 + 5 2 ( x 1 ) = 5 2 x 1 \large \displaystyle \implies 100 + 5^{2(x-1)} = 5^{2x-1}

100 + 5 2 x 2 = 5 2 x 1 \large \displaystyle \implies 100 + 5^{2x-2} = 5^{2x-1}

100 + 5 2 x 2 = 5 ( 5 2 x 2 ) \large \displaystyle \implies 100 + 5^{2x-2} = 5(5^{2x-2})

5 ( 5 2 x 2 ) ( 5 2 x 2 ) = 100 \large \displaystyle \implies 5(5^{2x-2}) - (5^{2x-2})= 100

4 ( 5 2 x 2 ) = 100 \large \displaystyle \implies 4(5^{2x-2}) = 100

5 2 x 2 = 25 \large \displaystyle \implies 5^{2x-2} = 25

5 2 x 2 = 5 2 \large \displaystyle \implies 5^{2x-2} = 5^2

Since 5 x 5^x is an increasing function on R R , it is one-one on R R . Hence, 5 a = 5 b a = b 5^a = 5^b \implies a = b for real numbers a a and b b . Therefore,

2 x 2 = 2 x = 2 \large \displaystyle \implies 2x-2 = 2 \implies \boxed{x = 2}

Munem Shahriar
Sep 10, 2018

5 2 x 1 2 5 x 1 = 100 5 2 x 5 1 2 5 x 2 5 1 = 100 2 5 x 1 5 2 5 x 1 25 = 100 2 5 x ( 1 5 1 25 ) = 100 2 5 x ( 4 25 ) = 100 2 5 x = 100 4 × 25 2 5 x = 25 × 25 2 5 x = 2 5 2 x = 2 \begin{aligned} 5^{2x - 1} - 25^{x - 1} & = 100 \\ \Rightarrow 5^{2x} \cdot 5^{- 1} - 25^x \cdot 25^{-1} & = 100 \\ \Rightarrow 25^x \cdot \dfrac 15 -25^x \cdot \dfrac 1{25} & = 100 \\ \Rightarrow 25^x\left(\dfrac 15 - \dfrac 1{25} \right) & = 100 \\ \Rightarrow 25^x\left(\dfrac4{25} \right) & = 100 \\ \Rightarrow 25^x & = \dfrac{100}4 \times 25 \\ \Rightarrow 25^x & = 25 \times 25 \\ \Rightarrow 25^x & = 25^2 \\ \implies x & = \boxed 2 \\ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...