Logarithms, Trigonometry, Integrals (Part 4)

Calculus Level 5

0 π / 4 ln ( sin ( x ) ) ln ( cos ( x ) ) sin ( x ) cos ( x ) d x \displaystyle \int _{ 0 }^{ \pi /4 }{ \frac { \ln { \left( \sin { (x) } \right) } \ln { \left( \cos { (x) } \right) } }{ \sin { (x) } \cos { (x) } } dx }

Given that the integral above is equal to ζ ( a ) b \dfrac {\zeta(a)}b , where a a and b b are integers, find a + b a+b .

Notation

  • ζ ( s ) = n = 1 1 n s \displaystyle \zeta (s) = \sum _{ n=1 }^{ \infty }{ \frac { 1 }{ { n }^{ s } } } .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
Dec 31, 2015

I = 1 2 0 π 2 ln ( sin x ) ln ( cos x ) sin x cos x d x \large{\mathbb I= \frac{1}{2} \displaystyle \int ^{\frac{\pi}{2}}_{0} \frac{\ln(\sin x) \ln (\cos x)}{\sin x \cos x}dx}

Multiplying I \mathbb I by 2 sin x cos x 2 sin x cos x \frac{2 \sin x \cos x }{2 \sin x \cos x} and put t = sin 2 x t=\sin ^2 x we get

1 16 0 1 ln ( 1 t ) ln t ( 1 t ) t d t \large{\Rightarrow \frac{1}{16}\displaystyle \int^{1}_{0} \frac{\ln(1-t)\ln t}{(1-t)t}dt}

Let J = 0 1 ln ( 1 t ) ln t ( 1 t ) t d t J=\displaystyle \int^{1}_{0} \frac{\ln(1-t)\ln t}{(1-t)t}dt

J = 0 1 ln ( 1 t ) ln t t d t + 0 1 ln ( 1 t ) ln t ( 1 t ) d t \large{\Rightarrow J=\displaystyle \int^{1}_{0} \frac{\ln(1-t)\ln t}{t}dt+\displaystyle \int^{1}_{0} \frac{\ln(1-t)\ln t}{(1-t)}dt}

J = 2 0 1 ln ( 1 t ) ln t t d t \large{\Rightarrow J=2 \displaystyle \int^{1}_{0} \frac{\ln(1-t)\ln t}{t}dt}

Using Integration by parts. Taking ln ( 1 t ) \ln (1-t) as first function.

J = 2 ( ln ( 1 t ) ln 2 ( t ) 2 0 1 + 0 1 ln 2 ( t ) 2 ( 1 t ) d t ) \large{ \Rightarrow J=2 \left(\frac{\ln(1-t) \ln^{2}(t)}{2}|^{1}_{0}+ \displaystyle \int^{1}_{0}\frac{\ln^{2}(t)}{2(1-t)}dt \right)}

J = 0 1 r = 1 t r 1 ln 2 ( t ) d t \large{ \Rightarrow J= \displaystyle \int^{1}_{0} \displaystyle \sum^{\infty}_{r=1} t^{r-1} \ln^{2} (t) dt}

We know that 0 1 x a 1 = 1 a \large{\displaystyle \int^{1}_{0} x^{a-1}=\frac{1}{a}}

now 0 1 s x s x a 1 = 0 1 x a 1 ln s ( x ) = ( 1 ) s s ! a s + 1 \large{\displaystyle \int^{1}_{0} \frac{\partial^{s}}{\partial x^{s}}x^{a-1} =\displaystyle \int^{1}_{0}x^{a-1} \ln^{s}(x)=\frac{(-1)^{s} s!}{a^{s+1}} }

J = r = 1 0 1 t r 1 ln 2 ( t ) d t \large{ \Rightarrow J= \displaystyle \sum^{\infty}_{r=1} \displaystyle \int^{1}_{0} t^{r-1} \ln^{2} (t) dt}

J = r = 1 2 r 3 \large{ \Rightarrow J=\displaystyle \sum^{\infty}_{r=1} \frac{2}{r^3}}

J = 2 ζ ( 3 ) \Large{ \Rightarrow J=2 \zeta(3)}

I = ζ ( 3 ) 8 \Large{ \Rightarrow \mathbb I=\frac{\zeta(3)}{8}}

a = 3 a=3 and b = 8 b=8

Hence a + b = 11 \Large{a+b=11}

Great solution! Thanks

Pi Han Goh - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...