Given that the integral above is equal to , where and are integers, find .
Notation
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I = 2 1 ∫ 0 2 π sin x cos x ln ( sin x ) ln ( cos x ) d x
Multiplying I by 2 sin x cos x 2 sin x cos x and put t = sin 2 x we get
⇒ 1 6 1 ∫ 0 1 ( 1 − t ) t ln ( 1 − t ) ln t d t
Let J = ∫ 0 1 ( 1 − t ) t ln ( 1 − t ) ln t d t
⇒ J = ∫ 0 1 t ln ( 1 − t ) ln t d t + ∫ 0 1 ( 1 − t ) ln ( 1 − t ) ln t d t
⇒ J = 2 ∫ 0 1 t ln ( 1 − t ) ln t d t
Using Integration by parts. Taking ln ( 1 − t ) as first function.
⇒ J = 2 ( 2 ln ( 1 − t ) ln 2 ( t ) ∣ 0 1 + ∫ 0 1 2 ( 1 − t ) ln 2 ( t ) d t )
⇒ J = ∫ 0 1 r = 1 ∑ ∞ t r − 1 ln 2 ( t ) d t
We know that ∫ 0 1 x a − 1 = a 1
now ∫ 0 1 ∂ x s ∂ s x a − 1 = ∫ 0 1 x a − 1 ln s ( x ) = a s + 1 ( − 1 ) s s !
⇒ J = r = 1 ∑ ∞ ∫ 0 1 t r − 1 ln 2 ( t ) d t
⇒ J = r = 1 ∑ ∞ r 3 2
⇒ J = 2 ζ ( 3 )
⇒ I = 8 ζ ( 3 )
a = 3 and b = 8
Hence a + b = 1 1