Logaritmo #2

Algebra Level 1

If (log 2 = 0,3), (log 100 = 2), (log x = 1,3) and...

( x + log 1000 + log x + log 5 = y),

what is the value of y?

20 50 35 25

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

F i r s t w e n e e d t o f i n d t h e v a l u e o f x N o w l o g x = 1.3 l o g x = 1 + 0.3 l o g x = l o g 10 + l o g 2 l o g x = l o g 20 S o , x = 20 N o w , l e t s c a l u c l a t e l o g 5 : l o g 5 = l o g 1000 20 l o g 5 = l o g 1000 l o g 20 l o g 5 = 3 1.3 l o g 5 = 1.3 P u t t i n g v a l u e s i n t h e g i v e n e q u a t i o n : x + l o g 1000 + l o g x + l o g 5 = y 20 + 3 + 1.3 + 0.7 = y y = 25 First\quad we\quad need\quad to\quad find\quad the\quad value\quad of\quad x\\ Now\quad log\quad x\quad =\quad 1.3\\ \quad \quad \quad \quad log\quad x\quad =\quad 1\quad +\quad 0.3\\ \quad \quad \quad \quad log\quad x\quad =\quad log10\quad +\quad log2\\ \quad \quad \quad \quad log\quad x\quad =\quad log20\\ So,\quad x\quad =\quad 20\\ \\ Now,\quad let's\quad caluclate\quad log{ 5 }:\\ log{ 5 }\quad =\quad log{ \frac { 1000 }{ 20 } }\quad \\ log{ 5 }\quad =\quad log{ 1000 }-log{ 20 }\\ log{ 5 }\quad =\quad 3-1.3\\ log5\quad =\quad 1.3\\ \\ Putting\quad values\quad in\quad the\quad given\quad equation:\\ x\quad +\quad log1000\quad +\quad logx\quad +\quad log5\quad =\quad y\\ 20\quad +\quad 3\quad +\quad 1.3\quad +\quad 0.7\quad =\quad y\\ y\quad =\quad 25

Cheers!!:):)

Dear plz rectifyme if i am wrong the solution should be log5=log(100/20)=log100-log20=2-1.3=0.7 Regards

Niaz Ghumro - 6 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...