Logarthmic complex!

Geometry Level 4

If

log tan ( 3 0 ) 2 z 2 + 2 z 3 z + 1 < 2 \LARGE {\log_{\tan(30^\circ)} \frac{2|z|^{2}+2|z|-3}{|z|+1}<-2}

then choose the correct option

note that a b s ( z ) = z abs(z)=|z|

a b s ( z ) > 3 2 abs(z)>\frac{3}{2} a b s ( z ) > 2 abs(z)>2 a b s ( z ) < 3 2 abs(z)<\frac{3}{2} a b s ( z ) < 2 abs(z)<2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

tan 3 0 = 1 3 < 1 \tan 30^{\circ} = \dfrac{1}{\sqrt{3}} < 1

Hence when we remove the logarithm to convert the inequation into a easy solvable inequation, the inequality is reversed.

2 z 2 + 2 z 3 z + 1 > ( 1 3 ) 2 \dfrac{2|z^2| + 2|z| - 3}{|z|+1} > \left(\dfrac{1}{\sqrt{3}}\right)^{-2}

2 z 2 + 2 z 3 z + 1 > 3 \dfrac{2|z^2| + 2|z| - 3}{|z| + 1} > 3

2 z 2 + 2 z 3 > 3 z + 3 2 z 2 z 6 > 0 \Rightarrow 2|z|^2 + 2|z| - 3 > 3|z| + 3 \Rightarrow 2|z|^2 - |z| - 6 > 0

( 2 z + 3 ) ( z 2 ) > 0 z > 2 (2|z| + 3)(|z| - 2) > 0 \Rightarrow \large\boxed{|z| > 2}

hey @Vishwak Srinivasan do the inequality always change when the log is moved to the R.H.S??

Palash Som - 5 years, 2 months ago

Log in to reply

No,The inequality only changes when the base of logarithm is less than 1,otherwise it would remain the same.

Ayush Agarwal - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...