Logarithms

Algebra Level 2

If log x ( 1 8 ) = 3 2 \log_{x} \left(\dfrac{1}{8}\right) = - \dfrac{3}{2} , then find x x .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

log x 1 8 = 3 2 log 2 1 8 log 2 x = 3 2 3 log 2 x = 3 2 log 2 x = 2 x = 2 2 = 4 \begin{aligned} \log_x \frac 18 & = - \frac 32 \\ \frac {\log_2 \frac 18}{\log_2 x} & = - \frac 32 \\ \frac {-3}{\log_2 x} & = - \frac 32 \\ \log_2 x & = 2 \\ \implies x & = 2^2 = \boxed{4} \end{aligned}

Smart approach.

Factored Radical - 4 years, 2 months ago

Note first that log x ( 1 8 ) = log x ( 8 1 ) = log x ( 8 ) = log x ( 2 3 ) = 3 log x ( 2 ) \large \log_{x} \left(\dfrac{1}{8}\right) = \log_{x} (8^{-1}) = -\log_{x}(8) = -\log_{x}(2^{3}) = -3\log_{x}(2) .

We then have that

log x ( 1 8 ) = 3 2 3 log x ( 2 ) = 3 2 log x ( 2 ) = 1 2 x 1 / 2 = 2 x = 4 \large \log_{x} \left(\dfrac{1}{8}\right) = -\dfrac{3}{2} \Longrightarrow -3\log_{x}(2) = -\dfrac{3}{2} \Longrightarrow \log_{x}(2) = \dfrac{1}{2} \Longrightarrow x^{1/2} = 2 \Longrightarrow x = \boxed{4} .

Satwik Murarka
Apr 6, 2017

Solution:

log x 1 8 = 3 2 log x 1 log x 8 = 3 2 ( log x a b = log x a log x b ) 0 log x 8 = 3 2 ( log x 1 = 0 ) log x 8 = 3 2 2 log x 8 = 3 log x 8 2 = 3 ( b log x a = log x a b ) log x 64 = 3 x = 4 ( l o g x a = b x b = a ) \begin{aligned}{\log_{x}\frac{1}{8}}&=-\frac{3}{2} \\ \log_{x}1-\log_{x}8 &=-\frac{3}{2} \hspace{1cm} \color{#D61F06}{(\log_x\frac{a}{b}=\log_{x}{a}-\log_{x}{b})} \\ 0-\log_{x}8&=-\frac{3}{2}\hspace{1cm} \color{#D61F06}{(\log_{x}1=0)} \\ \log_{x}8&=\frac{3}{2} \\ 2\log_{x}8&=3 \\ \log_{x}8^{2}&=3 \hspace{1cm} \color{#D61F06}{(b\log_{x}a=\log_{x}a^{b})}\\ \log_{x}64&=3 \\ x&=\boxed{4} \hspace{1cm}\color{#D61F06}(log_{x}a=b \color{#D61F06}\implies{x^{b}=a})\end{aligned}

Factored Radical
Apr 6, 2017

Rewrite to: (√x)-3 = 2-3. Simplify to root x = 2 Answer: x = 4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...