Logging inequalities 3

Algebra Level 2

log 0.3 ( x 1 ) < log 0.09 ( x 1 ) \large \log_{0.3}{(x-1)}<\log_{0.09}{(x-1)}

Find the range of x x that satisfies the inequality above.

( 2 , 1 ) (-2,1) ( 1 , 2 ) (1,2) ( 2 , ) (2,\infty) None of these choices

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

N o t e t h a t 0.09 = ( 0.3 ) 2 S o , w e c a n r e w r i t e t h e e q u a t i o n a s : log 0.3 ( x 1 ) < log ( 0.3 ) 2 ( x 1 ) W h i c h i s e q u a l t o : log 0.3 ( x 1 ) < 1 2 log 0.3 ( x 1 ) O p e r a t i n g : log 0.3 ( x 1 ) < 0 C h a n g i n g t h e b a s e : ln ( x 1 ) ln 0.3 < 0. A s ln 0.3 < 0 , t h e i n e q u a l i t y c h a n g e s : ln ( x 1 ) > 0 F i n a l l y , s o l v i n g f o r x : x 1 > 1 T h e r e f o r e , x > 2 , o r x ( 2 , ) Note\quad that\quad 0.09={ (0.3) }^{ 2 }\\ So,\quad we\quad can\quad rewrite\quad the\quad equation\quad as:\quad \log _{ 0.3 }{ (x-1) } <\log _{ { (0.3 })^{ 2 } }{ (x-1) } \\ Which\quad is\quad equal\quad to:\quad \log _{ 0.3 }{ (x-1) } <\frac { 1 }{ 2 } \cdot \log _{ 0.3 }{ (x-1) } \\ Operating:\quad \log _{ 0.3 }{ (x-1) } <0\\ Changing\quad the\quad base:\quad \frac { \ln { (x-1) } }{ \ln { 0.3 } } <0.\quad As\quad \ln { 0.3 } <0,\quad the\quad inequality\quad changes:\quad \ln { (x-1) } >0\\ Finally,\quad solving\quad for\quad x:\quad x-1>1\\ Therefore,\quad x>2,\quad or\quad x\in (2,\infty )

I chose none of the above as the statements are equal at x=2 and the question asks for less than, not less than or equal.

Owen Berendes - 5 years, 3 months ago

Log in to reply

( 2 , ) (2,\infty) does not include 2. If it includes 2, the range would be written as [ 2 , ) [2,\infty)

Hung Woei Neoh - 5 years, 2 months ago

0.09=(0.3)^2 so we can write (x-1)^0.3=<(x-1) which is true for (x-1)>=1 so x>=2

damien G - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...