Logging off

Algebra Level 3

Then find the value of l o g 2 x log_{2}x


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ravi Dwivedi
Sep 5, 2015

8 1 1 log 5 9 = 8 1 log 9 5 = ( 9 2 ) log 9 5 = 9 log 9 25 = 25 \large 81^{\frac{1}{\log_5 9}} = 81^{\log_9 5} = (9^2)^{ \log_9 5}= 9^{\log_9 25}=25

\large 3^{\frac{3}{\log_\sqrt{6} 3}}=3^{3 \log_3 \sqrt{6}}= (\sqrt{6})^{3}=6\sqrt{6}

( 7 ) 2 log 25 7 = 7 1 2 ( 2 log 7 25 ) = 25 \large (\sqrt{7})^{\frac{2}{\log_{25} 7}} = 7^{\frac{1}{2}(2 \log_7 25)} = 25

12 5 log 25 6 = ( 5 3 ) log 25 6 = 5 log 25 6 3 = 5 log 5 6 3 2 = 6 3 2 = 6 6 \large 125^{\log_{25} 6} = (5^3)^{\log_{25} 6} = 5^ {\log_{25} 6^{3}} = 5^ {\log_{5} 6^{\frac{3}{2}}} = 6^{\frac{3}{2}}=6\sqrt{6}

Putting in the given equation

x = ( 25 + 6 6 ) ( 25 6 6 ) 409 = 625 216 409 = 1 \large x=\frac{(25+6\sqrt6)(25-6\sqrt{6})}{409}= \frac{625-216}{409}=1

log 2 x = log 2 1 = 0 \implies \log_2 x = \log_2 1 = \boxed{0}

Yea. The same thing.

Abhiram Rao - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...