Logging the problem

Calculus Level 5

If a n = ( log 3 ) n r = 1 n r 2 r ! ( n r ) ! , n N \displaystyle a_{n}= (\text{log } 3)^{ n } \sum _{ r=1 }^{ n }{ \frac { { r }^{ 2 } }{ r!(n-r)! } } ,\quad n\in \mathbb{N} , then the sum of the series a 1 + a 2 + a 3 + { a }_{ 1 }+{ a }_{ 2 }+{ a }_{ 3 } + \ldots can be represented as

( ζ + log α ) ( γ log β ) (\zeta +\text{log } \alpha )(\gamma \text{log } \beta ) .

Find the value of ζ + α + γ + β \sqrt { \zeta +\alpha +\gamma +\beta }


  • ζ , α , γ , β \zeta ,\alpha ,\gamma ,\beta are all positive integers.

  • α , β \alpha,\beta are prime numbers.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Shashwat Shukla
Jan 20, 2015

We have:

a n = ( l o g 3 ) n n ! 1 n r 2 ( n r ) a_{n}=\frac{(log3)^n}{n!}\sum_{1}^{n}r^2{n\choose r}

Also: 1 n r 2 ( n r ) = n ( n + 1 ) 2 n 2 \sum_{1}^{n}r^2{n\choose r} = n(n+1)2^{n-2} Proving/Verifying this fairly trivial result is left as an exercise to the reader(just love doing that :D).

Thus: a n = ( l o g 3 ) n n ! n ( n + 1 ) 2 n 2 = ( 2 l o g 3 ) n n ( n + 1 ) 4 n ! = n ( n + 1 ) ( l o g 9 ) n 4 n ! a_{n}=\frac{(log3)^n}{n!}n(n+1)2^{n-2}=\frac{(2log3)^n*n(n+1)}{4n!}=\frac{n(n+1)(log9)^n}{4n!}

The n ! n! in the denominator motivates us to try and use the series of e x e^x here. x e x = x + x 2 1 ! + x 3 2 ! + x 4 3 ! . . . xe^x=x+\frac{x^2}{1!}+\frac{x^3}{2!}+\frac{x^4}{3!}...

Differentiating with respect to x x 2 times we get: x e x + 2 e x = 1 r ( r + 1 ) x r 1 r ! xe^x+2e^x=\sum_{1}^{\infty}\frac{r(r+1)x^{r-1}}{r!}

Finally, multiplying both sides by x x and dividing by 4 we get:

x e x ( x + 2 ) 4 = 1 r ( r + 1 ) x r 4 r ! \frac{xe^x(x+2)}{4}=\sum_{1}^{\infty}\frac{r(r+1)x^r}{4r!}

All that remains to be done is to substitute x = l o g 9 x=log9 .

Upon doing so, the required expression becomes:

9 l o g 3 ( 1 + l o g 3 ) 9log3(1+log3) .

Answer= 9 + 3 + 3 + 1 = 4 \sqrt{9+3+3+1}=4

Okay I 'am completing , Ur intial Task f ( x ) = ( 1 + x ) n = 1 + C 1 x + C 2 x 2 + . . . . . . . . . . . C n x n d i f f : f ( x ) = n ( 1 + x ) n 1 = C 1 + 2 C 2 x + . . . . . . . . . . n C n x n 1 x f ( x ) = n x ( 1 + x ) n 1 = C 1 x + 2 C 2 x 2 . . . . . . . . . . . . . . . n C n x n d i f f : n ( 1 + x ) n 1 + x n ( n 1 ) ( 1 + x ) n 2 = C 1 + 2 2 C 2 x + . . . . . . . . n 2 C n x n 1 P u t : x = 1 n ( n + 1 ) 2 n 2 = r = 1 n r 2 C r \displaystyle{f\left( x \right) ={ (1+x) }^{ n }=1+{ C }_{ 1 }x+{ C }_{ 2 }{ x }^{ 2 }+...........{ C }_{ n }{ x }^{ n }\\ diff:\\ f^{ ' }\left( x \right) =n{ (1+x) }^{ n-1 }={ C }_{ 1 }+2{ C }_{ 2 }{ x }+..........n{ C }_{ n }{ x }^{ n-1 }\\ xf^{ ' }\left( x \right) =n{ x(1+x) }^{ n-1 }={ C }_{ 1 }{ x }+2{ C }_{ 2 }{ { x }^{ 2 } }...............{ nC }_{ n }{ x }^{ n }\\ diff:\\ n{ (1+x) }^{ n-1 }+xn(n-1){ (1+x) }^{ n-2 }={ C }_{ 1 }+{ 2 }^{ 2 }{ C }_{ 2 }x+........{ { n }^{ 2 }C }_{ n }{ x }^{ n-1 }\\ Put:\quad x=1\\ \boxed { n(n+1){ 2 }^{ n-2 }=\sum _{ r=1 }^{ n }{ { r }^{ 2 }{ C }_{ r } } } }

Deepanshu Gupta - 6 years, 4 months ago

Log in to reply

Thank you :)

Shashwat Shukla - 6 years, 4 months ago

Nice use! Thanks, I am new to it!

Kartik Sharma - 6 years, 4 months ago

Marvellous

Kunal Gupta - 6 years, 4 months ago

Log in to reply

Thank you :)

Shashwat Shukla - 6 years, 4 months ago

Same solution at the same time!!

Sudeep Salgia - 6 years, 4 months ago

Log in to reply

Yea. Rather regrettable I guess. But anything I've left out is there in your solution and vice versa. So, cheers :)

Shashwat Shukla - 6 years, 4 months ago

Log in to reply

True that.

Sudeep Salgia - 6 years, 4 months ago

Another way to compute

Let the required sum be equal to A.

It can be written as

A= 1 n r 2 n r n 1 C r 1 = n 1 n r n 1 C r 1 \sum _{ 1 }^{ n }{ { r }^{ 2 }\frac { n }{ r } \quad ^{ n-1 }{ C }_{ r-1 }\quad =\quad \quad \quad n\sum _{ 1 }^{ n }{ { r\quad }^{ n-1 }{ C }_{ r-1 }\quad } } ....(1)

Now rewriting this series again in backward direction is same as replacing

r-1 by (n-r) or r by (n-(r-1))=(n-r+1). So

A= n 1 n ( n r + 1 ) n 1 C r 1 n\sum _{ 1 }^{ n }{ { (n-r+1)\quad }^{ n-1 }{ C }_{ r-1 }\quad } ......(2).

Adding eq 1 and 2.

2A= n 1 n ( n + 1 ) n 1 C r 1 n\sum _{ 1 }^{ n }{ { (n+1)\quad }^{ n-1 }{ C }_{ r-1 }\quad }

A= n ( n + 1 ) 2 1 n n 1 C r 1 \frac { n(n+1) }{ 2 } \sum _{ 1 }^{ n }{ ^{ n-1 }{ C }_{ r-1 }\quad } .

A= n ( n + 1 ) 2 2 n 1 \frac { n(n+1) }{ 2 } { 2 }^{ n-1 }

Gautam Sharma - 6 years, 4 months ago

Does this problem qualify as a level 5 problem in Algebra?

Soumyadeep Mukherjee - 6 years, 4 months ago

Log in to reply

yes see its rating was 320

Gautam Sharma - 6 years, 4 months ago
Sudeep Salgia
Jan 20, 2015

It is easy to solve the problem once you know which series you need to manipulate and how do you need to do that. Begin with considering the well known expansion, ( 1 + x ) n = r = 0 n ( n r ) x r \displaystyle (1+x)^n = \sum_{r=0}^n \binom{n}{r} x^r . My motivation to choose this was that appearance of terms similar to that in binomial coefficients in the general term of the given series. Differentiating it w.r.t. x x , we obtain, n ( 1 + x ) n 1 = r = 1 n ( n r ) r x r 1 n(1+x)^{n-1} = \sum_{r=1}^n \binom{n}{r} r x^{r-1} To get the r 2 r^2 in the expression we need to do a similar task but with a slight modification. Multiply both the sides by x x again differentiate to get, n ( ( 1 + x ) n 1 + ( n 1 ) x ( 1 + x ) n 2 ) = r = 1 n ( n r ) r 2 x r 1 n\left((1+x)^{n-1} + (n-1)x(1+x)^{n-2} \right) = \sum_{r=1}^n \binom{n}{r} r^2 x^{r-1} Substitute x = 1 x=1 to obtain, r = 1 n n ! r ! ( n r ) ! r 2 = n ( n + 1 ) 2 n 2 a n = n ( n + 1 ) n ! 2 n 2 ( log 3 ) n \displaystyle \sum_{r=1}^n \frac{n!}{r!(n-r)!} r^2 = n(n+1) 2^{n-2} \Rightarrow a_n = \frac{n(n+1)}{n!} 2^{n-2} (\text{log } 3)^n

So what we want is S = n = 1 a n \displaystyle S = \sum_{n=1}^{ \infty } a_n .

Again, the term a n a_n looks very similar to a well known expression - the Maclaurin series for e x e^x . Let us apply the procedure once again but with a slight modification. So, first multiply by x x and then differentiate. d d x ( x e x ) = d d x ( r = 1 x r + 1 r ! + x ) \therefore \frac{\text{d }}{\text{d}x} \left( xe^x \right) = \frac{\text{d }}{\text{d}x} \left( \sum_{r=1}^{ \infty } \frac{x^{r+1}}{r!} + x \right) e x ( x + 1 ) = r = 1 ( r + 1 ) x r r ! + 1 \Rightarrow e^x(x+1) = \sum_{r=1}^{ \infty }(r+1) \frac{x^r}{r!} + 1 Differentiate once again to obtain, e x ( x + 2 ) = r = 1 r ( r + 1 ) x r 1 r ! \Rightarrow e^x(x+2) = \sum_{r=1}^{ \infty }r(r+1) \frac{x^{r-1}}{r!} Substitute x = 2 log 3 x = 2 \text{ log }3 to change the above expression into something that we want to have. 9 ( 2 log 3 + 2 ) = r = 1 r ( r + 1 ) ( 2 log 3 ) r 1 r ! 9\left(2 \text{ log }3 +2 \right) = \sum_{r=1}^{ \infty }r(r+1) \frac{\left( 2 \text{ log }3 \right)^{r-1}}{r!} 9 ( 2 log 3 + 2 ) = 2 log 3 r = 1 a r 9\left(2 \text{ log }3 +2 \right) =\frac{2}{ \text{ log } 3} \sum_{r=1}^{ \infty } a_r

S = 18 ( 1 + log 3 ) log 3 2 S = ( 1 + log 3 ) ( 9 log 3 ) \displaystyle \therefore S = 18 (1+ \text{ log }3 ) \frac{\text{ log } 3}{2} \Rightarrow S = \left(1 + \text{ log } 3 \right)\left( 9 \text{ log } 3 \right) .

Compare with the given form to obtain the value of the constants and hence the answer = 4 \displaystyle = \boxed{4} .

You never said a and b had to be integers, so the answer could be anything.

D G - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...