Logical Log... #1

Algebra Level 4

Suppose that a , b , c R + a, b, c \in \mathbb {R^{+}} , such that a log 3 7 = 27 a^{\log_3 7} = 27 , b log 7 11 = 49 b^{\log_7 11} = 49 , and c log 11 25 = 11 c^{\log_{11}25} = \sqrt{11} . Find a ( log 3 7 ) 2 + b ( log 7 11 ) 2 + c ( log 11 25 ) 2 . a^{(\log_3 7)^2} + b^{(\log_7 11)^2} + c^{(\log_{11} 25)^2}.


The answer is 469.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Siddharth Bhatt
Apr 26, 2015

We know from the first three equations that log a 27 = log 3 7 , log b 49 = log 7 11 \log_a27 = \log_37, \log_b49 = \log_711 , and log c 11 = log 11 25 \log_c\sqrt{11} = \log_{11}25 . Substituting, we find

a ( log a 27 ) ( log 3 7 ) + b ( log b 49 ) ( log 7 11 ) + c ( log c 11 ) ( log 11 25 ) a^{(\log_a27)(\log_37)} + b^{(\log_b49)(\log_711)} + c^{(\log_c\sqrt {11})(\log_{11}25)} .

We know that x log x y = y x^{\log_xy} =y , so we find

2 7 log 3 7 + 4 9 log 7 11 + 11 log 11 25 27^{\log_37} + 49^{\log_711} + \sqrt {11}^{\log_{11}25}

( 3 log 3 7 ) 3 + ( 7 log 7 11 ) 2 + ( 1 1 log 11 25 ) 1 / 2 (3^{\log_37})^3 + (7^{\log_711})^2 + ({11^{\log_{11}25}})^{1/2} .

The 3 3 and the log 3 7 \log_37 cancel out to make 7 7 , and we can do this for the other two terms. We obtain

7 3 + 1 1 2 + 2 5 1 / 2 7^3 + 11^2 + 25^{1/2}

= 343 + 121 + 5 = 469 = 343 + 121 + 5= \boxed {469} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...