Logs and sines and squares!

Calculus Level 5

0 π / 2 sin 2 x log 2 ( sin 2 x ) d x = π A log B C π D log E + π F G π H \large{\int_{0}^{\pi/2}\sin^2{x}\log^{2}{(\sin^{2}x)}dx = \pi^{A}\log^{B}{C} - \pi^{D}\log{E}+ \dfrac{\pi^{F}}{G} - \dfrac{\pi}{H}}

If the above integral satisfies for positive, not necessarily distinct, integers A , B , C , D , E , F , G , H A,B,C,D,E,F,G,H , then submit the value of A B + C D + E F + G H AB+CD+EF+GH as your answer.
Try its easier version


The answer is 34.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Max Filippov
Jan 28, 2016

First, notice that using logarithm property we get ( A ) 0 π 2 sin 2 x log 2 sin 2 x d x = 4 0 π 2 sin 2 x log 2 sin x d x (A) \int_0^{\frac{\pi}{2}} \sin^2{x} \log^2 {\sin^2{x}} dx = 4 \int_0^{\frac{\pi}{2}} \sin^2{x} \log^2 {\sin{x}} dx Then, integrate by parts to get ( B ) 0 π 2 sin 2 x log 2 sin x d x = 0 π 2 cos 2 x log 2 sin x d x + 2 0 π 2 cos 2 x log sin x d x (B) \int_0^{\frac{\pi}{2}} \sin^2{x} \log^2 {\sin{x}} dx = \int_0^{\frac{\pi}{2}} \cos^2{x} \log^2 {\sin{x}} dx + 2 \int_0^{\frac{\pi}{2}} \cos^2{x} \log {\sin{x}} dx We are going to compute the latter integral: using 2 cos 2 x = cos 2 x + 1 2 \cos^2{x} = \cos{2x}+1 we get that ( C ) 0 π 2 2 cos 2 x log sin x d x = 0 π 2 cos 2 x log sin x d x + 0 π 2 log sin x d x (C) \int_0^{\frac{\pi}{2}} 2 \cos^2{x} \log {\sin{x}} dx = \int_0^{\frac{\pi}{2}} \cos{2x} \log {\sin{x}} dx + \int_0^{\frac{\pi}{2}} \log {\sin{x}} dx The last one is well known: 0 π 2 log sin x d x = π log 2 2 \int_0^{\frac{\pi}{2}} \log {\sin{x}} dx = - \frac {\pi \log{2}}{2}

Next, we use this identity (obtained by integration by parts of the left integral again): ( D ) 0 π 2 cos 2 x log sin x d x = 0 π 2 sin 2 x log sin x d x 0 π 2 cos 2 x d x (D) \int_0^{\frac{\pi}{2}} \cos^2{x} \log {\sin{x}} dx = \int_0^{\frac{\pi}{2}} \sin^2{x} \log {\sin{x}} dx - \int_0^{\frac{\pi}{2}} \cos^2{x} dx

Using the formula cos 2 x = cos 2 x sin 2 x \cos{2x} = \cos^2{x}-\sin^2{x} and that the last integral is equal to π 4 \frac{\pi}{4} we plug in to compute the integral from (C): ( C ) 0 π 2 2 cos 2 x log sin x d x = π 4 π log 2 2 (C) \int_0^{\frac{\pi}{2}} 2 \cos^2{x} \log {\sin{x}} dx = -\frac{\pi}{4} - \frac {\pi \log{2}}{2}

Denote I 1 = 0 π 2 sin 2 x log 2 sin x d x I_{1} = \int_0^{\frac{\pi}{2}} \sin^2{x} \log^2 {\sin{x}} dx , I 2 = 0 π 2 cos 2 x log 2 sin x d x I_{2} = \int_0^{\frac{\pi}{2}} \cos^2{x} \log^2 {\sin{x}} dx

We then get the system of equations. The integral from 1st equation is computed here or here . The second equation follows directly from (B).

I 1 + I 2 = 0 π 2 log 2 sin x d x = π 3 24 + π log 2 2 2 I_{1} + I_{2} = \int_0^{\frac{\pi}{2}} \log^2 {\sin{x}} dx = \frac{\pi^3}{24} + \frac{\pi \log^2{2}}{2}

I 1 I 2 = π 4 π log 2 2 I_{1} - I_{2} = - \frac{\pi}{4} - \frac {\pi \log{2}}{2}

So, we get that ( A ) 0 π 2 sin 2 x log 2 sin 2 x d x = 4 I 1 = 2 ( I 1 + I 2 ) + 2 ( I 1 I 2 ) = π log 2 2 π log 2 + π 3 12 π 2 (A) \int_0^{\frac{\pi}{2}} \sin^2{x} \log^2 {\sin^2{x}} dx =4I_{1} = 2(I_{1} + I_{2}) + 2(I_{1} - I_{2}) = \pi \log^2 {2} - \pi \log {2} + \frac{\pi^3}{12} - \frac{\pi}{2}

Finally, the answer is 1 × 2 + 2 × 1 + 2 × 3 + 12 × 2 = 2 + 2 + 6 + 24 = 34 1 \times 2 + 2 \times 1 + 2 \times 3 + 12 \times 2 = 2 + 2 + 6 + 24 = \boxed{34}

Correct method! It took me only 5 steps as I used Beta Function

Aditya Kumar - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...