∫ 0 π / 2 sin 2 x lo g 2 ( sin 2 x ) d x = π A lo g B C − π D lo g E + G π F − H π
If the above integral satisfies for positive, not necessarily distinct, integers
A
,
B
,
C
,
D
,
E
,
F
,
G
,
H
, then submit the value of
A
B
+
C
D
+
E
F
+
G
H
as your answer.
Try its
easier
version
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Correct method! It took me only 5 steps as I used Beta Function
Problem Loading...
Note Loading...
Set Loading...
First, notice that using logarithm property we get ( A ) ∫ 0 2 π sin 2 x lo g 2 sin 2 x d x = 4 ∫ 0 2 π sin 2 x lo g 2 sin x d x Then, integrate by parts to get ( B ) ∫ 0 2 π sin 2 x lo g 2 sin x d x = ∫ 0 2 π cos 2 x lo g 2 sin x d x + 2 ∫ 0 2 π cos 2 x lo g sin x d x We are going to compute the latter integral: using 2 cos 2 x = cos 2 x + 1 we get that ( C ) ∫ 0 2 π 2 cos 2 x lo g sin x d x = ∫ 0 2 π cos 2 x lo g sin x d x + ∫ 0 2 π lo g sin x d x The last one is well known: ∫ 0 2 π lo g sin x d x = − 2 π lo g 2
Next, we use this identity (obtained by integration by parts of the left integral again): ( D ) ∫ 0 2 π cos 2 x lo g sin x d x = ∫ 0 2 π sin 2 x lo g sin x d x − ∫ 0 2 π cos 2 x d x
Using the formula cos 2 x = cos 2 x − sin 2 x and that the last integral is equal to 4 π we plug in to compute the integral from (C): ( C ) ∫ 0 2 π 2 cos 2 x lo g sin x d x = − 4 π − 2 π lo g 2
Denote I 1 = ∫ 0 2 π sin 2 x lo g 2 sin x d x , I 2 = ∫ 0 2 π cos 2 x lo g 2 sin x d x
We then get the system of equations. The integral from 1st equation is computed here or here . The second equation follows directly from (B).
I 1 + I 2 = ∫ 0 2 π lo g 2 sin x d x = 2 4 π 3 + 2 π lo g 2 2
I 1 − I 2 = − 4 π − 2 π lo g 2
So, we get that ( A ) ∫ 0 2 π sin 2 x lo g 2 sin 2 x d x = 4 I 1 = 2 ( I 1 + I 2 ) + 2 ( I 1 − I 2 ) = π lo g 2 2 − π lo g 2 + 1 2 π 3 − 2 π
Finally, the answer is 1 × 2 + 2 × 1 + 2 × 3 + 1 2 × 2 = 2 + 2 + 6 + 2 4 = 3 4