Logs are cool

Algebra Level 3

Solve
log 2 x + 3 ( 6 x 2 + 23 x + 21 ) = 4 log 3 x + 7 ( 4 x 2 + 12 x + 9 ) \large \log_{2x+3}(6x^{2}+23x+21) = 4-\log_{3x+7} (4x^{2}+12x+9)

Let the only solution. of x x in the above equation be represented as m n -\dfrac{m}{n} , where m m and n n are coprime positive integers. Find m + n m+n .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Juan Pablo Salas
Jul 6, 2017

First of all we need to remember that the logarithmic of x to base b is only defined when b>1 and x\ge 1

In this case we need 2x+3>1 and 3x+7>1 as well as 6 x 2 + 23 x + 21 6{ x }^{ 2 }+23x+21\ge 1 and 4 x 2 + 12 x + 9 4{ x }^{ 2 }+12x+9\ge 1

  1. We factor what's inside of the logarithms

l o g 2 x + 3 ( 2 x + 3 ) ( 3 x + 7 ) log _{ 2x+3 }{ (2x+3)(3x+7) } =4- l o g 3 x + 7 ( 2 x + 3 ) 2 log _{ 3x+7 }{ { (2x+3) }^{ 2 } }

  1. We apply logarithm rules to both sides ( l o g a x y log _{ a }{ xy } = l o g a x log _{ a }{ x } + l o g a y log _{ a }{ y } and l o g a x n log _{ a }{ { x }^{ n } } =n l o g a x log _{ a }{ x } )

l o g 2 x + 3 ( 2 x + 3 ) log _{ 2x+3 }{ (2x+3) } + l o g 2 x + 3 ( 3 x + 7 ) log _{ 2x+3 }{ (3x+7) } =4-2 l o g 3 x + 7 ( 2 x + 3 ) log _{ 3x+7 }{ { (2x+3) } }

  1. Now at the LHS we have \log _{ 2x+3 }{ (2x+3) }) which is the same thing as 1 so we have:

1+ l o g 2 x + 3 ( 3 x + 7 ) log _{ 2x+3 }{ (3x+7) } =4-2 l o g 3 x + 7 ( 2 x + 3 ) log _{ 3x+7 }{ { (2x+3) } }

  1. We substract 1 from both sides:

l o g 2 x + 3 ( 3 x + 7 ) log _{ 2x+3 }{ (3x+7) } =3-2 l o g 3 x + 7 ( 2 x + 3 ) log _{ 3x+7 }{ { (2x+3) } }

  1. Finally we apply the change of base tu the logarithm at the LHS:

Change of base: l o g a b log _{ a }{ b } = f r a c log c b frac { \log _{ c }{ b } } { \log _{ c }{ a } })

In this case, we have a=2x+3,b=3x+7,c=3x+7 so

(log { 2x+3 }{ 3x+7 } =(frac { \log _{ 3x+7 }{ 3x+7 } }{ \log _{ 3x+7 }{ 2x+3 } } =(frac { 1 }{ \log _{ 3x+7 }{ 2x+3 } } To get: \frac { 1 }{ \log _{ 3x+7 }{ (2x+3) } } =3-2\log _{ 3x+7 }{ { (2x+3) } } 6. Now we can use a substitution u=\log _{ 3x+7 }{ { (2x+3) } } \frac { 1 }{ u } =3-2u 7. Multiplying everything by u, setting the equation equal to zero, and solving the quadratic we get: 1=3u-2{ u }^{ 2 } 2{ u }^{ 2 }-3u+1=0 (2u-1)(u-1)=0 u=\sfrac { 1 }{ 2 } ,1 8. We substitute the original value and get two logarithmic equations \frac { 1 }{ 2 } =\log _{ 3x+7 }{ { (2x+3) } } 1=\log _{ 3x+7 }{ { (2x+3) } } 9. We elevate 3x+7 to both sides of the equations: (1) 2x+3={ (3x+7) }^{ 1/2 } (2) 2x+3=3x+7 Solving (2) we get x=-4 and solving (1) by squaring it, setting to zero and factoring we get x=-\sfrac { 1 }{ 4 } and x=-2 However as we saw earlier, we need 2x+3>1 and 3x+7>1 and the only solution that satisfies this is x=-\frac { 1 }{ 4 } which is in the form x=-\frac { m }{ n } _ Thus we have m+n=\boxed { 5 } __

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...