Logs on both sides!

Algebra Level 3

Find the value of x x that satisfies log 3 ( log 9 x ) = log 9 ( log 3 x ) \log_{3}(\log_{9} x) = \log_{9}(\log_{3} x) .


The answer is 81.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Dec 19, 2018

log 3 ( log 9 x ) = log 9 ( log 3 x ) Using log 3 throughout log 3 ( log 3 x log 3 9 ) = log 3 ( log 3 x ) log 3 9 Note that log 3 9 = log 3 3 2 = 2 log 3 3 = 2 log 3 ( log 3 x 2 ) = log 3 ( log 3 x ) 2 log 3 ( log 3 x 2 ) = log 3 ( log 3 x ) 1 2 log 3 x 2 = log 3 x Squaring both sides and rearranging log 3 2 x = 4 log 3 x Since log 3 x 0 log 3 x = 4 x = 3 4 = 81 \begin{aligned} \log_3\left(\log_9 x \right) & = \log_9\left(\log_3 x \right) & \small \color{#3D99F6} \text{Using }\log_3 \text{ throughout} \\ \log_3\left(\frac {\log_3 x}{\color{#3D99F6}\log_3 9} \right) & = \frac {\log_3\left(\log_3 x \right)}{\color{#3D99F6} \log_3 9} & \small \color{#3D99F6} \text{Note that }\log_3 9 = \log_3 3^2 = 2 \log_3 3 = 2 \\ \log_3\left(\frac {\log_3 x}{\color{#3D99F6}2} \right) & = \frac {\log_3\left(\log_3 x \right)}{\color{#3D99F6} 2} \\ \log_3\left(\frac {\log_3 x}2 \right) & = \log_3\left(\log_3 x \right)^\frac 12 \\ \implies \frac {\log_3 x}2 & = \sqrt{\log_3 x} & \small \color{#3D99F6} \text{Squaring both sides and rearranging} \\ \log_3^2 x & = 4 \log_3 x & \small \color{#3D99F6} \text{Since }\log_3 x \ne 0 \\ \log_3 x & = 4 \\ \implies x & = 3^4 = \boxed {81} \end{aligned}

Thank you.

Hana Wehbi - 2 years, 5 months ago
Amal Hari
Dec 18, 2018

l o g 3 ( l o g 9 ( x ) ) = l o g 9 ( l o g 3 ( x ) ) log3(log9(x))=log9(log3(x))

let,

l o g 9 ( x ) = y [ 1 ] log9(x)=y [1]

9 y = x ; *9^y=x;

l o g 9 ( l o g 3 ( x ) ) = z log9(log3(x))=z

l o g 3 ( x ) = l o g 3 ( 9 y ) = l o g 3 ( ( 3 2 ) y ) = 2 y log3(x)=log3(9^y)=log3((3^2)^y)=2y

l o g 9 ( 2 y ) = z log9(2y)=z

[2] l o g 9 ( 2 y ) log9(2y) = l o g 3 ( y ) log3(y) and let l o g 3 ( y ) = b log3(y)=b

then [3] 3 b = y 3^b=y

and l o g 9 ( 2 y ) = b log9(2y)=b , refer[2]

9 b = 2 y 9^b=2y

refer[3] ( 2 y = 2 3 b , a n d 2 y = 9 b ) (2y=2*3^b, and 2y=9^b)

2 3 b = 9 b , 9 b = ( 3 2 ) b = ( 3 b ) 2 2*3^b=9^b ,9^b=(3^2)^b=(3^b)^2

y=3^b.

2*y=y^2

y 2 = 2 y y^2=2y

y=2;

l o g 9 ( x ) = 2 log9(x)=2

x = 9 2 = 81. x=9^2=81.

Thank you.

Hana Wehbi - 2 years, 5 months ago
David Vreken
Dec 18, 2018

log 3 ( log 9 x ) = log 9 ( log 3 x ) \log_3 (\log_9 x) = \log_9 (\log_3 x)

log 3 ( log 9 x ) = log 3 ( log 3 x ) log 3 9 \log_3 (\log_9 x) = \frac{\log_3 (\log_3 x)}{\log_3 9}

log 3 ( log 9 x ) = log 3 ( log 3 x ) 2 \log_3 (\log_9 x) = \frac{\log_3 (\log_3 x)}{2}

2 log 3 ( log 9 x ) = log 3 ( log 3 x ) 2 \log_3 (\log_9 x) = \log_3 (\log_3 x)

log 3 ( log 9 x ) 2 = log 3 ( log 3 x ) \log_3 (\log_9 x)^2 = \log_3 (\log_3 x)

( log 9 x ) 2 = log 3 x (\log_9 x)^2 = \log_3 x

( log 3 x log 3 9 ) 2 = log 3 x (\frac{\log_3 x}{\log_3 9})^2 = \log_3 x

( log 3 x 2 ) 2 = log 3 x (\frac{\log_3 x}{2})^2 = \log_3 x

( log 3 x ) 2 4 = log 3 x \frac{(\log_3 x)^2}{4} = \log_3 x

( log 3 x ) 2 log 3 x = 4 \frac{(\log_3 x)^2}{\log_3 x} = 4

log 3 x = 4 \log_3 x = 4

x = 3 4 x = 3^4

x = 81 x = \boxed{81}

Thank you.

Hana Wehbi - 2 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...