Log's power is log itself (1)

Algebra Level 3

True or false :

( ln 2.1 ) ln 2.2 > ( ln 2.2 ) ln 2.1 \large \left( \ln 2.1 \right)^{ \ln 2.2 } > \left( \ln 2.2 \right)^{ \ln 2.1 }

False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Harsh Khatri
Feb 29, 2016

Both l n ( 2.1 ) ln(2.1) and l n ( 2.2 ) ln(2.2) are positive and hence we raise both sides of the inequality to the power 1 l n ( 2.1 ) l n ( 2.2 ) \frac{1}{ln(2.1)ln(2.2)} without affecting the sign of the given inequality.

( l n ( 2.1 ) ) 1 l n ( 2.1 ) > ( l n ( 2.2 ) ) 1 l n ( 2.2 ) \displaystyle \Rightarrow \big( ln(2.1)\big) ^{\frac{1}{ln(2.1)}} > \big( ln(2.2)\big) ^{\frac{1}{ln(2.2)}}

Now consider the function f ( x ) = x 1 x f(x) = x^{\frac{1}{x}}

f ( x ) = x 1 x ( 1 l n x x 2 ) f'(x) = x^{\frac{1}{x}} \big( \frac{1-lnx}{x^2} \big)

f ( x ) > 0 f'(x) > 0 in x ( 0 , e ) x \in (0,e) .

Since f f is increasing in ( 0 , e ) (0,e) :

0 < l n ( 2.1 ) < l n ( 2.2 ) < e 0 < ln(2.1) < ln(2.2) < e

f ( 0 ) < f ( l n ( 2.1 ) ) < f ( l n ( 2.2 ) ) < f ( e ) \displaystyle \Rightarrow f(0) < f(ln(2.1)) < f(ln(2.2)) < f(e)

( l n ( 2.1 ) ) 1 l n ( 2.1 ) < ( l n ( 2.2 ) ) 1 l n ( 2.2 ) \displaystyle \Rightarrow \big( ln(2.1)\big) ^{\frac{1}{ln(2.1)}} < \big( ln(2.2)\big)^{\frac{1}{ln(2.2)}}

Hence, the given inequality is false.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...