Logs but no wood - part 1

Algebra Level 4

If a = log 12 27 a = \log_{12} 27 and log 6 16 = x ( y a z + a ) \log_6{16}= x\left(\frac{y-a}{z+a}\right) , find the value x + y + z x+y+z .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Krishna Ramesh
May 8, 2014

log 12 27 = a \log _{ 12 }{ 27=a }

3 log 12 3 = a \Rightarrow \quad 3\log _{ 12 }{ 3 } =a

3 log 3 12 = a \Rightarrow \quad \frac { 3 }{ \log _{ 3 }{ 12 } } =a 3 1 + 2 log 3 2 = a \Rightarrow \quad \frac { 3 }{ 1+2\log _{ 3 }{ 2 } } =a

log 3 2 = 3 a 2 a \Rightarrow \log _{ 3 }{ 2 } =\frac { 3-a }{ 2a } log 2 3 = 2 a 3 a \Rightarrow \log _{ 2 }{ 3=\frac { 2a }{ 3-a } }

N o w , log 6 16 = 4 log 6 2 = 4 log 2 6 = 4 1 + log 2 3 = 4 1 + 2 a 3 a Now,\quad \log _{ 6 }{ 16=\quad 4\log _{ 6 }{ 2 } } =\frac { 4 }{ \log _{ 2 }{ 6 } } =\frac { 4 }{ 1+\log _{ 2 }{ 3 } } =\frac { 4 }{ 1+\frac { 2a }{ 3-a } }

log 6 16 = 4 ( 3 a 3 + a ) \Rightarrow \log _{ 6 }{ 16=4\left( \frac { 3-a }{ 3+a } \right) }

s o , x = 4 , y = 3 a n d z = 3 x + y + z = 10 so,\quad x=4,\quad y=3\quad and\quad z=3\quad \Rightarrow \quad x+y+z=10\\

l o g 6 16 = 4 l o g 6 2 = 4 l o g 12 2 l o g 12 6 = 4 l o g 12 2 + a a l o g 12 6 a + a log_{6}16 = 4log_{6}2 = 4 \frac{log_{12}2}{log_{12}6} = 4 \frac{log_{12}2 + a - a}{log_{12}6 - a + a}

l o g 6 16 = 4 l o g 12 ( 2 × 27 ) a l o g 12 6 27 + a \Rightarrow log_{6}16 = 4 \frac{log_{12}(2 \times 27) - a}{log_{12} \frac{6}{27} + a} s o , x = 4 , y = l o g 12 ( 2 × 27 ) a n d z = l o g 12 6 27 so,\ x = 4, \\\\ y = log_{12}(2 \times 27) \ and \\\\ z = log_{12}\frac{6}{27}

x + y + z = 5 \Rightarrow x + y + z = 5

What is the error in this solution?

Tushar Marda - 7 years ago

Log in to reply

I solved the problem this way too.

Sissi Jian - 5 years, 11 months ago

excellent!

Mayank Holmes - 7 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...