Lol or not Lol? Here is the log

Calculus Level 3

n = 1 1 3 n n \displaystyle \sum_{n = 1}^\infty \frac{1}{3^n n}

The sum above can be written as S = ln ( a b ) S=\ln \left(\dfrac{a}{b}\right) , where a a and b b are coprime positive integers. Find a + b a + b .

5 9 4 8 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Apr 30, 2016

Maclurin series of ln ( 1 x ) = n = 1 x n n \ln (1-x) = - \displaystyle \sum_{n=1}^\infty \frac{x^n}{n} .

Substituting x = 1 3 x = \dfrac{1}{3} , we get n = 1 1 3 n n = ln ( 1 1 3 ) = ln ( 2 3 ) = ln ( 3 2 ) \displaystyle \sum_{n=1}^\infty \frac{1}{3^n n} = - \ln \left(1-\frac{1}{3}\right) = - \ln \left(\frac{2}{3}\right) = \ln \left(\frac{3}{2}\right)

a + b = 5 \implies a + b = \boxed{5}


Another Method \underline{\text{Another Method}}

n = 1 1 3 n n = n = 1 x n n Let x = 1 3 = n = 1 x n 1 d x = n = 1 x n 1 d x = n = 0 x n d x = n = 0 x n d x = 1 1 x d x = ln ( 1 x ) Putting back x = 1 3 = ln ( 3 2 ) \begin{aligned} \sum_{n=1}^\infty \frac{\color{#3D99F6}{1}}{\color{#3D99F6}{3}^n n} & = \sum_{n=1}^\infty \frac{\color{#3D99F6}{x}^n}{n} \quad \quad \small \color{#3D99F6}{\text{Let } x = \frac{1}{3}} \\ & = \sum_{n=1}^\infty \int x^{n-1} dx = \int \sum_{n=1}^\infty x^{n-1} dx = \int \sum_{n=0}^\infty x^{n} dx \\ & = \int \sum_{n=0}^\infty x^{n} dx = \int \frac{1}{1-x} dx \\ & = - \ln (1-x) \quad \quad \small \color{#3D99F6}{\text{Putting back } x = \frac{1}{3}} \\ & = \ln \left( \frac{3}{2}\right) \end{aligned}

a + b = 5 \implies a + b = \boxed{5}

Otto Bretscher
Apr 30, 2016

My solution is similar to Compañero Guillermo's.

We have the Taylor Series ln ( 1 x ) = n = 1 x n n \ln(1-x)=-\sum_{n=1}^{\infty}\frac{x^n}{n} for x < 1 |x|<1 . Evaluating this at x = 1 3 x=\frac{1}{3} gives S = ln ( 2 3 ) = ln ( 3 2 ) S=-\ln\left(\frac{2}{3}\right)=\ln\left(\frac{3}{2}\right) . The answer is 5 \boxed{5}

ln ( 1 + x ) = n = 1 ( 1 ) n + 1 x n n , if x < 1 \displaystyle \ln (1 + x) = \sum_{n = 1}^\infty \frac{(-1)^{n + 1} x^n}{n}, \text{ if } |x| < 1 ,for researching this formula see next pragraph. We know n = 0 x n = 1 1 x , if x < 1 \displaystyle \sum_{n = 0}^\infty x^n = \frac{1}{1 - x}, \text{ if } |x| < 1 Integrating,and using Abel theorem or Weierstrass theorem for uniform convergence of continuous functions we get n = 0 x n + 1 n + 1 = ln ( 1 x ) + C , with C a constant and x < 1 \displaystyle \sum_{n = 0}^\infty \frac{x^{n + 1}}{n + 1} = - \ln (1 - x) + C, \text{ with C a constant and } |x| < 1 Evaluating at x = 0 x = 0 we get C = 0 C = 0 . This implies n = 1 1 3 n n = ln ( 2 3 ) = ln ( 3 2 ) a + b = 5 \displaystyle \sum_{n = 1}^\infty \frac{1}{3^n n} = - \ln (\frac{2}{3}) = \ln (\frac{3}{2}) \Rightarrow a + b = 5

Nice solution! (+1) It's always good to read about Abel and Weierstrass, but I don't think we really need them here ;)

Otto Bretscher - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...