Must be Algebra

Algebra Level 4

{ x + 7 y + 3 v + 5 u = 16 8 x + 4 y + 6 v + 2 u = 16 2 x + 6 y + 4 v + 8 u = 16 5 x + 3 y + 7 v + u = 16 \begin{cases} x + 7y + 3v + 5u = 16 \\ 8x + 4y + 6v + 2u = -16 \\ 2x + 6y + 4v + 8u = 16 \\ 5x + 3y + 7v + u = -16 \end{cases}

Real numbers x x , y y , u u , and v v satisfy the system of equations above. Find x y u v xyuv .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Hung Woei Neoh
Jun 8, 2016

{ x + 7 y + 3 v + 5 u = 16 1 8 x + 4 y + 6 v + 2 u = 16 2 2 x + 6 y + 4 v + 8 u = 16 3 5 x + 3 y + 7 v + 1 u = 16 4 \begin{cases} x+7y+3v+5u=16&\implies\boxed{1}\\ 8x+4y+6v+2u=-16&\implies\boxed{2}\\ 2x+6y+4v+8u=16&\implies\boxed{3}\\ 5x+3y+7v+1u=-16&\implies\boxed{4}\\ \end{cases}

1 + 4 : \boxed{1}+\boxed{4}:

6 x + 10 y + 10 v + 6 u = 0 5 6x+10y+10v+6u=0\implies\boxed{5}

2 + 3 : \boxed{2}+\boxed{3}:

10 x + 10 y + 10 v + 10 u = 0 6 10x+10y+10v+10u=0\implies\boxed{6}

6 5 : \boxed{6}-\boxed{5}:

4 x + 4 u = 0 x + u = 0 7 x = u 8 4x+4u=0\\ x+u=0\implies\boxed{7}\\ x=-u \implies\boxed{8}

Substitute 7 \boxed{7} into 5 : \boxed{5}:

6 ( x + u ) + 10 ( y + v ) = 0 10 ( y + v ) = 0 y + v = 0 v = y 9 6(x+u)+10(y+v)=0\\ 10(y+v)=0\\ y+v=0\\ v=-y \implies\boxed{9}

Substitute 8 \boxed{8} and 9 \boxed{9} into 1 : \boxed{1}:

u + 7 y + 3 ( y ) + 5 u = 16 4 u + 4 y = 16 u + y = 4 10 -u+7y+3(-y)+5u=16\\ 4u+4y=16\\ u+y=4\implies\boxed{10}

Substitute 8 \boxed{8} and 9 \boxed{9} into 3 : \boxed{3}:

2 ( u ) + 6 y + 4 ( y ) + 8 u = 16 6 u + 2 y = 16 3 u + y = 8 11 2(-u) + 6y+4(-y)+8u = 16\\ 6u+2y=16\\ 3u+y=8 \implies \boxed{11}

11 10 : \boxed{11} - \boxed{10}:

2 u = 4 u = 2 2 + y = 4 y = 2 v = y = 2 x = u = 2 2u=4 \implies u=2\\ 2+y=4 \implies y=2\\ v=-y=-2\\ x=-u=-2

Therefore, x y u v = 2 ( 2 ) ( 2 ) ( 2 ) = 16 xyuv = -2(2)(2)(-2) = \color{#D61F06}{\boxed{\color{#333333}{16}}}

Nice solution

Finn C - 5 years ago

Did the exact same...

Aditya Kumar - 5 years ago

Same way..

Yatin Khanna - 5 years ago
Colin Carmody
Jun 8, 2016

Easiest method!

Put the left half of the equation into a matrix (not the variables, the coefficients) (4 by 4), take the inverse, then put the right half into a matrix (4 by 1) and multiply the two together. You will get a matrix (4 by 1) where the top number is x, the next is y... (in the future order try appear in the equations). You should have 2, -2, 2, -2. Multiplied together, it is 16.

This sounds complicated, but once you understand it and you use a calculator, it is quite simple. In fact, I did this on my phone! (So sorry if there are typos in this solution!)

nice! .... 1 up vote

Finn C - 5 years ago

To be honest, mate. I don't know why the two solutions above yours don't use the easy way. Maybe because they have never heard what a matrix is..... :(

A Former Brilliant Member - 4 years, 9 months ago

{ x + 7 y + 3 v + 5 u = 16 . . . ( 1 ) 8 x + 4 y + 6 v + 2 u = 16 . . . ( 2 ) 2 x + 6 y + 4 v + 8 u = 16 . . . ( 3 ) 5 x + 3 y + 7 v + u = 16 . . . ( 4 ) \begin{cases} x + 7y + 3v + 5u = 16 & ...(1) \\ 8x + 4y + 6v + 2u = -16 & ...(2) \\ 2x + 6y + 4v + 8u = 16 & ...(3) \\ 5x + 3y + 7v + u = -16 & ...(4) \end{cases}

( 1 ) + ( 2 ) : 9 x + 11 y + 9 v + 7 u = 0 . . . ( 5 ) ( 3 ) + ( 4 ) : 7 x + 9 y + 11 v + 9 u = 0 . . . ( 6 ) ( 3 ) ( 1 ) : x y + v + 3 u = 0 . . . ( 7 ) ( 2 ) ( 4 ) : 3 x + y v + u = 0 . . . ( 8 ) \begin{array} {lrl} (1)+(2): & 9x + 11y + 9v + 7u & = 0 & ...(5) \\ (3)+(4): & 7x + 9y + 11v + 9u & = 0 & ...(6) \\ (3)-(1): & x - y + v + 3u & = 0 & ...(7) \\ (2)-(4): & 3x + y - v + u & = 0 & ...(8) \end{array}

( 7 ) + ( 8 ) : 4 x + 4 u = 0 x = u \begin{aligned} (7)+(8): \quad 4x + 4u & = 0 \\ \implies x & = -u \end{aligned}

( 5 ) + ( 6 ) : 16 x + 20 y + 20 v + 16 u = 0 20 y + 20 v = 0 y = v \begin{aligned} (5)+(6): \quad 16x + 20y + 20v + 16u & = 0 \\ 20y + 20v & = 0 \\ \implies y & = -v \end{aligned}

( 8 ) : 3 x + y v + u = 0 3 x + y + y x = 0 2 x + 2 y = 0 x = y = v = u \begin{aligned} (8): \quad 3x + y - v + u & = 0 \\ 3x + y + y -x & = 0 \\ 2x+2y & = 0 \\ \implies x & = -y = v = -u \end{aligned}

( 1 ) : x + 7 y + 3 v + 5 u = 16 x 7 x + 3 x 5 x = 16 8 x = 16 x = 2 \begin{aligned} (1): \quad x + 7y + 3v + 5u & = 16 \\ x - 7x + 3x - 5x & = 16 \\ -8x & = 16 \\ \implies x & = -2 \end{aligned}

x = 2 , y = 2 , v = 2 , u = 2 , x y u v = 16 \implies x = -2, \ y = 2, \ v = -2, \ u = 2, \ \implies xyuv = \boxed{16}

Nice! I spent so long writing that out I had no idea someone else was doing it for me!

Finn C - 5 years ago
Finn C
Jun 8, 2016

{ x + 7 y + 3 v + 5 u = 16 8 x + 4 y + 6 v + 2 u = 16 2 x + 6 y + 4 v + 8 u = 16 5 x + 3 y + 7 v + u = 16 \begin{cases} x + 7y + 3v + 5u = 16 \\ 8x + 4y + 6v + 2u = -16 \\ 2x + 6y + 4v + 8u = 16 \\ 5x + 3y + 7v + u = -16 \end{cases}

Real numbers x x , y y , u u , and v v satisfy the system of equations above. Find x y u v xyuv .

Eq 1 + Eq 4

= 6 x x + 10 y y + 10 v v + 6 u u = 0

Eq 2 + Eq 3

= 10 x x + 10 y y + 10 v v + 10 u u = 0

From this we obtain

6 ( x + u x + u ) + 10 ( y + v y + v ) = 0

10 ( x + u x + u ) + 10 ( y + v y + v ) = 0

which yields x + u x + u = 0 and y + v y + v = 0.

Substituting - x x for u u , and y -y for v v in the original equation, we find

4 x + 4 y - 4x + 4y = 16

6 x 2 y 6x - 2y = -16

2 x + 2 y 2x + 2y = 0

Plugging this in with earlier assumptions we find

x x = -2, y y = 2, u u = 2, v v = -2

x y u v xyuv = 16

Moderator note:

Good approach exploiting the symmetry, which makes solving the system of linear equations less tedious.

Typo: 6 x + 10 y + 10 v + 6 u = 0 6x+10y+10v+6u=0

Hung Woei Neoh - 5 years ago

Log in to reply

OK, fixed it

Finn C - 5 years ago

You can also solve this using a matrix (4X4 matrices are tedious to invert by hand but a computer makes short work of it).

Oximas Omar
May 30, 2020

you can solve it using matrix multiplication, A B = C A*B = C then B = A 1 C B = A^-1*C were A is the coefficients matrix, B is the variables matrix, and C is the results matrix. see https: //www.mathsisfun.com/algebra/systems-linear-equations-matrices.html for further explanation.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...