Long but lovely equation

Algebra Level 5

( x + 1 ) ( x 3 ) 5 ( x + 2 ) ( x 4 ) + ( x + 3 ) ( x 5 ) 9 ( x + 4 ) ( x 6 ) 2 ( x + 5 ) ( x 7 ) 13 ( x + 6 ) ( x 8 ) = 92 585 . \dfrac{(x+1)(x-3)}{5(x+2)(x-4)}+\dfrac{(x+3)(x-5)}{9(x+4)(x-6)}-\dfrac{2(x+5)(x-7)}{13(x+6)(x-8)}=\dfrac{92}{585}.

If the real root of the above equation is of the form a ± b a\pm\sqrt{b} ,find a + b a+b .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rohit Udaiwal
Jan 16, 2016

We have, ( x + 1 ) ( x 3 ) 5 ( x + 2 ) ( x 4 ) + ( x + 3 ) ( x 5 ) 9 ( x + 4 ) ( x 6 ) 2 ( x + 5 ) ( x 7 ) 13 ( x + 6 ) ( x 8 ) = 92 585 . \dfrac{(x+1)(x-3)}{5(x+2)(x-4)}+\dfrac{(x+3)(x-5)}{9(x+4)(x-6)}-\dfrac{2(x+5)(x-7)}{13(x+6)(x-8)}=\dfrac{92}{585}.

Observing the numerators and denominators,we conclude that each of them contain the expression x 2 2 x x^2-2x ,so put ( x 1 ) 2 = y \color{#3D99F6}{(x-1)^2}=\color{#3D99F6}{y} ,our equation becomes y 4 5 ( y 9 ) + y 16 9 ( y 25 ) 2 ( y 36 ) 13 ( y 49 ) = 92 585 . \dfrac{\color{#3D99F6}{y}-4}{5(\color{#3D99F6}{y}-9)}+\dfrac{\color{#3D99F6}{y}-16}{9(\color{#3D99F6}{y}-25)}-\dfrac{2(\color{#3D99F6}{y}-36)}{13(\color{#3D99F6}{y}-49)}=\dfrac{92}{585}. Now note that 1 5 + 1 9 2 13 = 92 585 \dfrac{1}{5}+\dfrac{1}{9}-\dfrac{2}{13}=\dfrac{92}{585} .Subtracting corresponding terms we get,

5 5 ( y 9 ) + 9 9 ( y 25 ) 2 13 13 ( y 49 ) = 0 1 y 9 + 1 y 25 2 y 49 = 0 1 y 9 1 y 49 = 1 y 49 1 y 25 40 y 9 = 24 y 25 3 ( y 9 ) + 5 ( y 25 ) = 0 8 y = 152 y = 19 x = 1 ± 19 \dfrac{5}{5(\color{#3D99F6}{y}-9)}+\dfrac{9}{9(\color{#3D99F6}{y}-25)}-\dfrac{2\cdot13}{13(\color{#3D99F6}{y}-49)}=0 \implies \dfrac{1}{\color{#3D99F6}{y}-9}+\dfrac{1}{\color{#3D99F6}{y}-25}-\dfrac{2}{\color{#3D99F6}{y}-49}=0 \\ \implies \dfrac{1}{\color{#3D99F6}{y}-9}-\dfrac{1}{\color{#3D99F6}{y}-49}=\dfrac{1}{\color{#3D99F6}{y}-49}-\dfrac{1}{\color{#3D99F6}{y}-25} \implies \dfrac{-40}{\color{#3D99F6}{y}-9}=\dfrac{24}{\color{#3D99F6}{y}-25} \\ \implies 3(\color{#3D99F6}{y}-9)+5(\color{#3D99F6}{y}-25)=0 \implies 8\color{#3D99F6}{y}=152 \\ \therefore \color{#3D99F6}{y}=19 \\ \therefore ~\boxed{x=1\pm\sqrt{19}}

I thought I have a better way, but you are the best! :D

Adam Phúc Nguyễn - 5 years, 5 months ago

Log in to reply

Can you please show me your solution?

Rohit Udaiwal - 5 years, 5 months ago

Log in to reply

It's 7th Grade solution so it's not good

Adam Phúc Nguyễn - 5 years, 5 months ago

L e t t = x 2 2 x , a n d n = 8. Then the equation after multiplying the factors is:- t 3 5 ( t n ) + t 15 9 ( t 3 n ) 2 t 35 13 ( t 6 n ) = 92 585 . ( t n ) + 5 5 ( t n ) + ( t 3 n ) + 9 9 ( t 3 n ) 2 ( t 6 n ) + 13 13 ( t 6 n ) = 92 585 . 1 5 + 1 t n + 1 9 + 1 t 3 n 2 1 5 2 1 t 6 n 92 585 = 0. B u t 1 5 + 1 9 2 13 92 585 = 0. 1 t n + 1 t 3 n 2 t 6 n = 0. ( t 3 n ) + ( t n ) ( t n ) ( t 3 n ) 2 t 6 n = 0 B u t o n l y n u m e r a t o r = 0 , w i t h c o m m o n d e n o m i n a t o r . ( 2 t 4 n ) ( t 6 n ) 2 ( t n ) ( t 3 n ) = 0 16 n t + 24 n 2 + 8 n t 6 n 2 = 0 , n 0. 8 t + 18 n = 0 , p u t t i n g v a l u e s o f t a n d n , W e g e t x 2 2 x 18 = 0 , x = 1 ± 19 = a + b . a + b = 20 Let~~ t=x^2-2x,~~ and~~ n=8.~~~ \text{Then the equation after multiplying the factors is:-} \\ \dfrac{t - 3}{5*(t - n)} + \dfrac{t - 15}{9*(t - 3n)} - 2*\dfrac{t - 35}{13*(t - 6n)} =\dfrac{92}{585}.\\ \implies~ \dfrac{(t - n) + 5}{5*(t - n)} + \dfrac{(t - 3n) + 9}{9*(t - 3n)} - 2*\dfrac{(t - 6n) + 13}{13*(t - 6n)} =\dfrac{92}{585}.\\ \implies~\dfrac 1 5 + \dfrac 1{t - n} + \dfrac 1 9 + \dfrac 1{t - 3n} - 2*\dfrac 1 5 - 2* \dfrac 1{t -6n} - \dfrac{92}{585}=0.\\ But ~\dfrac 1 5+\dfrac 1 9 - \dfrac 2{13} -\dfrac{92}{585}=0.\\ \therefore~~ \dfrac 1{t - n} + \dfrac 1{t -3n} - \dfrac 2{t - 6n}=0.\\ \implies~ \dfrac{(t - 3n)+(t - n)}{(t - n)*(t - 3n)} - \dfrac 2{t - 6n}=0\\ But ~~ only ~~ numerator = 0, ~with ~common ~ denominator.\\ \implies~ (2t - 4n)*(t - 6n) - 2*(t - n)*(t - 3n)=0\\ \implies~ - 16nt +24n^2 + 8nt - 6n^2=0, ~~n\neq 0.\\ \therefore ~ -8t + 18n=0, ~~putting ~~ values~~ of~~ t~~ and~~ n,\\ We ~ get~~x^2 -2x - 18=0, \therefore ~x= 1 \pm \sqrt{19}=a+\sqrt b.\\ a+b=\Large ~~~~\color{#D61F06}{20}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...