Long computation

Algebra Level 4

k = 1 578 k = ? \large \sum_{k=1}^{578} \left \lfloor \sqrt{\left \lceil \sqrt k\right \rceil} \right \rfloor = \ ?


Related problem .
2016 2017 2014 2013 2015

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Nov 10, 2015

Let m = k m = \left \lceil \sqrt{k} \right \rceil and n = m n = \left \lfloor \sqrt{m} \right \rfloor . Then, we have:

\(\begin{array} {} n = \left \lfloor \sqrt{m} \right \rfloor & \Rightarrow n^2 \le m \le (n+1)^2 - 1 \\ m = \left \lceil \sqrt{k} \right \rceil & \Rightarrow (m-1)^2+1 \le k \le m^2 & \Rightarrow k \le \left[(n+1)^2 - 1\right]^2 \end{array} \)

Therefore,

n = 1 1 k 9 n = 2 10 k 64 n = 3 65 k 225 n = 4 226 k 576 n = 5 577 k 578 \begin{array} {llc} n = 1 & \Rightarrow & 1 \le k \le 9 \\ n = 2 & \Rightarrow & 10 \le k \le 64 \\ n = 3 & \Rightarrow & 65 \le k \le 225 \\ n = 4 & \Rightarrow & 226 \le k \le 576 \\ n = 5 & \Rightarrow & 577 \le k \le 578 \end{array}

And,

k = 1 578 k = k = 1 9 1 + k = 10 64 2 + k = 65 225 3 + k = 226 576 4 + k = 577 578 5 = 9 ( 1 ) + 55 ( 2 ) + 161 ( 3 ) + 351 ( 4 ) + 2 ( 5 ) = 9 + 110 + 483 + 1404 + 10 = 2016 \begin{aligned} \sum_{k=1}^{578} \left \lfloor \sqrt{\left \lceil \sqrt{k} \right \rceil} \right \rfloor & = \sum_{k=1}^{9} 1 + \sum_{k=10}^{64} 2 + \sum_{k=65}^{225} 3 + \sum_{k=226}^{576} 4 + \sum_{k=577}^{578} 5 \\ & = 9(1) + 55(2) + 161(3) + 351(4) + 2(5) \\ & = 9 + 110 + 483 + 1404 + 10 \\ & = \boxed{2016} \end{aligned}

Same way solution!

M Dub - 5 years, 7 months ago

Exactly Same Way!!!

Kushagra Sahni - 5 years, 7 months ago
Garrett Clarke
Nov 11, 2015

First, notice that k = n \lfloor{\sqrt{k}}\rfloor=n when n 2 k < ( n + 1 ) 2 n^2\leq k<(n+1)^2 .

Also notice that k = n \lceil{\sqrt{k}}\rceil=n when ( n 1 ) 2 < k n 2 (n-1)^2<k\leq n^2 . If we want to find when n 2 k < ( n + 1 ) 2 n^2\leq\lceil{\sqrt{k}}\rceil<(n+1)^2 (this is due to the bounds we found above), simply take the lower bound of when k = n 2 \lceil{\sqrt{k}}\rceil=n^2 and the upper bound of k = ( n + 1 ) 2 \lceil{\sqrt{k}}\rceil=(n+1)^2 . This gives us the following result: k = n when ( n 2 1 ) 2 < k ( ( n + 1 ) 2 1 ) 2 \lfloor{\sqrt{\lceil{\sqrt{k}}\rceil}}\rfloor=n\text{ when }(n^2-1)^2<k\leq ((n+1)^2-1)^2

To find how many numbers are in that bound, simply subtract the lower bound from the upper bound:

( ( n + 1 ) 2 1 ) 2 ( n 2 1 ) 2 = 4 n 3 + 6 n 2 1 ((n+1)^2-1)^2-(n^2-1)^2=4n^3+6n^2-1

Note that 576 = ( ( 4 + 1 ) 2 1 ) 2 576=((4+1)^2-1)^2 , so we can take our sum from 1 1 to 576 576 and then there are 2 terms left over (both will result in 5). Taking the sum from 1 1 to 4 4 and counting our two that our formula misses:

5 + 5 + n = 1 4 n ( 4 n 3 + 6 n 2 1 ) = 5 + 5 + 2006 = 2016 5+5+\displaystyle\sum_{n=1}^4 n(4n^3+6n^2-1)=5+5+2006=\boxed{2016}

AWESOME!!!!!!!

Pi Han Goh - 5 years, 7 months ago
Lambert Quesada
Nov 18, 2015

I did it the long way

Ashwin Kumar
Nov 12, 2015

Wrote a c++ program to find it

#include <iostream>
#include<math.h>
#include <cstdlib>
using namespace std;
float fun (int k){
return (sqrt(sqrt(k)));

}
int main() {
        float i,sum=0;
        for (i=1;i<579;i++){
        sum+=fun(i);
    }
    cout<<sum;
    return 0;
}

but it outputs 2269.38 if i take only integers i get 1962 why is it that we get different answers from computer and actual solution

Four line python code that returns 2016 :-)

1
2
3
4
5
import math
y = 0
for x in range(1, 579):
    y += math.floor(math.sqrt(math.ceil(math.sqrt(x))))
print "Answer = %d" % (y)

Yathish Dhavala - 5 years, 7 months ago

I also got 1962 as the answer while solving manually.

Niketan Nath - 5 years, 7 months ago

1962 + 54 = 2016

Daniel Prime - 5 years, 7 months ago

Log in to reply

I didnt understand why we have to add 54

Ashwin Kumar - 5 years, 7 months ago
William Isoroku
Nov 12, 2015

Did the long way but still got the same answer

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...