Long meme Infinite sum

Calculus Level 3

x = 69 1 420 + 69 2 421 + 69 3 422 + . . . x = \frac{69}{1\cdot420}+\frac{69}{2\cdot421}+\frac{69}{3\cdot422}+...

You can get the final answer using this site .

1 < x < 1.1 1<x<1.1 1.7 < x < 1.8 1.7<x<1.8 1.9 < x < 2 1.9<x<2 1.2 < x < 1.3 1.2<x<1.3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Riiko Miettinen
Apr 23, 2020

Chew-Seong Cheong
Apr 23, 2020

x = 69 1 420 + 69 1 421 + 69 1 422 + + 69 n ( 419 + n ) + = n = 1 69 n ( 419 + n ) By partial fraction decomposition = 69 419 n = 1 ( 1 n 1 n + 419 ) = 69 419 ( n = 1 1 n n = 420 1 n ) = 69 419 ( 1 1 + 1 2 + 1 3 + + 1 419 ) = 69 419 H ( 419 ) H ( n ) denotes the n th harmonic number. 69 419 6.616279428 By Excel spreadsheet 1.04 \begin{aligned} x & = \frac {69}{1\cdot 420} + \frac {69}{1\cdot 421} + \frac {69}{1\cdot 422} + \cdots + \blue{\frac {69}{n(419+n)}} + \cdots \\ & = \sum_{n=1}^\infty \blue{\frac {69}{n(419+n)}} & \small \blue{\text{By partial fraction decomposition}} \\ & = \frac {69}{419} \sum_{n=1}^\infty \left(\frac 1n - \frac 1{n+419} \right) \\ & = \frac {69}{419} \left(\sum_{n=1}^\infty \frac 1n - \sum_{n=420}^\infty \frac 1n \right) \\ & = \frac {69}{419} \blue{\left(\frac 11+\frac 12 + \frac 13 + \cdots + \frac 1{419}\right)} \\ & = \frac {69}{419} \blue{H(419)} & \small \blue{H(n) \text{ denotes the }n\text{th harmonic number.}} \\ & \approx \frac {69}{419} \cdot \blue{6.616279428} & \small \blue{\text{By Excel spreadsheet}} \\ & \approx 1.04 \end{aligned}

Therefore, 1 < x < 1.1 \boxed{1<x<1.1} .


Reference: Harmonic number

It would be better to add more info as H n γ + ln n + 1 2 n H_n\sim \gamma + \ln n+\frac{1}{2n} then for n = 419 n=419 H 419 γ + ln 419 + 1 2 × 419 6.61627 H_{419} \sim \gamma + \ln 419 +\frac{1}{2\times 419}\sim 6.61627

Naren Bhandari - 1 year, 1 month ago

Log in to reply

Nope, strictly everyone knows that H H_\infty does not converge. The above solution purposely avoided H H_\infty .

Chew-Seong Cheong - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...