Long way, long day

Geometry Level 5

[ cos 3 ( x 2 ) + 1 cos 3 ( x 2 ) ] 2 + [ sin 3 ( x 2 ) + 1 sin 3 ( x 2 ) ] 2 = 81 4 cos 2 ( 4 x ) \bigg[\cos^3\bigg(\frac{x}{2}\bigg)+\frac{1}{\cos^3\big(\frac{x}{2}\big)}\bigg]^2+\bigg[\sin^3\bigg(\frac{x}{2}\bigg)+\frac{1}{\sin^3\big(\frac{x}{2}\big)}\bigg]^2=\frac{81}{4}\cos^2(4x) Find the sum of all real x [ 0 ; 4 π ] x\in [0;4\pi] satisfy the equation above, submit your answer to 2 decimal places. If you think there are no roots, enter 0.00.


The answer is 25.13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

P C
Sep 6, 2016

The L H S LHS can be written as L H S = [ s i n 6 ( x 2 ) + c o s 6 ( x 2 ) ] + [ 1 s i n 6 ( x 2 ) + 1 c o s 6 ( x 2 ) ] + 4 LHS=\bigg[sin^6\big(\frac{x}{2}\big)+cos^6\big(\frac{x}{2}\big)\bigg]+\bigg[\frac{1}{sin^6\big(\frac{x}{2}\big)}+\frac{1}{cos^6\big(\frac{x}{2}\big)}\bigg]+4 = [ s i n 2 ( x 2 ) + c o s 2 ( x 2 ) ] 2 3 s i n 2 ( x 2 ) c o s 2 ( x 2 ) + 1 3 s i n 2 ( x 2 ) c o s 2 ( x 2 ) s i n 6 ( x 2 ) c o s 6 ( x 2 ) + 4 =\bigg[sin^2\big(\frac{x}{2}\big)+cos^2\big(\frac{x}{2}\big)\bigg]^2-3sin^2\big(\frac{x}{2}\big)cos^2\big(\frac{x}{2}\big)+\frac{1-3sin^2\big(\frac{x}{2}\big)cos^2\big(\frac{x}{2}\big)}{sin^6\big(\frac{x}{2}\big)cos^6\big(\frac{x}{2}\big)}+4 = 5 3 4 s i n 2 ( x ) + 64 48 s i n 2 ( x ) s i n 6 ( x ) 5 3 4 + 64 48 = 81 4 L H S =5-\frac{3}{4}sin^2(x)+\frac{64-48sin^2(x)}{sin^6(x)}\geq 5-\frac{3}{4}+64-48=\frac{81}{4}\geq LHS So the equality happens when { s i n 2 ( x ) = 1 s i n 6 ( x ) = 1 c o s 2 ( 4 x ) = 1 \begin{cases} sin^2(x)=1\\sin^6(x)=1\\cos^2(4x)=1\end{cases} , solve the system and we get x = π 2 + k π ; k Z x=\frac{\pi}{2}+k\pi; k\in\mathbb{Z} . Due to the interval, we'll have π 2 , 3 π 2 , 5 π 2 , 7 π 2 \frac{\pi}{2},\frac{3\pi}{2},\frac{5\pi}{2},\frac{7\pi}{2} as roots and the sum of them 25.13 \approx 25.13

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...