Look at the constant term

Algebra Level 5

If the roots of the polynomial equation 4 x 4 + 6 x 3 + 2 x 2 + 2003 x 4012009 = 0 \large {4x^{4}+6x^{3}+2x^{2}+2003x-4012009\,=\,0} are of the form a ± b c , a ± i 7 ( a + c ) d c 2 \dfrac{-a \pm \sqrt{b}}{c} \,\,\,\, , \,\,\,\, \dfrac{-a \pm i \cdot 7 \sqrt{(a+c) \cdot d}}{c^{2}} , where b b , c c and d d are primes. Find a + b + c + d \color{#3D99F6}{a+b+c+d} .


The answer is 4119.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Edwin Gray
Aug 18, 2018

The Equation 4x^4 + 6x^3 + 2x^2 + 2003x - 4012009 = (2x^2 + x + 2003)(2x^2 + 2x - 2003) =0, so we have 2 quadratic equations to solve:The solutions are: for the real pair, x = [-1 +/- sqrt(4007)]/2 , so b = 4007, a = 1, c = 2. For the complex pair, x = [ -1 +/- 7i sqrt(3 109)]/4, so d = 109, and a + b + c + d = 4119. Ed Gray

Ashish Menon
May 15, 2016

4 x 4 + 6 x 3 + 2 x 2 + 2003 x 4x^4 + 6x^3 + 2x^2 + 2003x - 4012009 = 0 0 4 x 4 4x^4 can be written as 2 x 2 × 2 x 2 2x^2 × 2x^2 . 6 x 3 6x^3 can be written as ( 2 x 2 × 2 x ) + ( x × 2 x 2 ) (2x^2 × 2x) + (x × 2x^2) . 2 x 2 2x^2 can be written as ( x × 2 x ) + ( 2 x 2 × 2003 ) + ( 2 x 2 × 2003 ) (x × 2x) + (2x^2 × 2003) + (2x^2 × -2003) . 2003 x 2003x can be written as ( 2003 × 2 x ) + ( 2003 × x ) (2003 × 2x) + (-2003 × x) . -4012009 = 2013 × 2013 2013 × -2013 .

So, 4 x 4 + 6 x 3 + 2 x 2 + 2003 x 4x^4 + 6x^3 + 2x^2 + 2003x - 4012009 can be written as ( 2 x 2 + x + 2003 ) ( 2 x 2 + 2 x 2003 ) \left(2x^2 + x + 2003\right)\left(2x^2 + 2x - 2003\right) .

So, ( 2 x 2 + x + 2003 ) ( 2 x 2 + 2 x 2003 ) = 0 \left(2x^2 + x + 2003\right)\left(2x^2 + 2x - 2003\right) = 0
Either ( 2 x 2 + x + 2003 ) = 0 \left(2x^2 + x + 2003\right) = 0 or ( 2 x 2 + 2 x 2003 ) = 0 \left(2x^2 + 2x - 2003\right) = 0
Applying quadratic formula on both equations we get:-
x = 1 ± 4007 2 x = \dfrac{-1 \pm \sqrt{4007}}{2} or x = 1 ± 7 i 327 4 = 1 ± 7 i ( 1 + 2 ) × 109 4 x = \dfrac{-1 \pm 7i\sqrt{327}}{4} = \dfrac{-1 \pm 7i\sqrt{(1+2) × 109}}{4}


Here 4007 4007 , 2 2 and 109 109 are primes. So, a = 1 ; b = 4007 ; c = 2 ; d = 109 a = 1 ; b = 4007 ; c = 2 ; d = 109
a + b + c + d = 1 + 2 + 4007 + 109 = 4119 \therefore a + b + c + d = 1 + 2 + 4007 + 109 = \boxed{4119} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...