Look At The Sequences

Algebra Level 1

x x is a real number that satisfies 2 2048 x + 2 2048 x = 2 . \large { 2^{2048x} + 2^{-2048x}= 2}.

Evaluate 2 x + 2 x . \large { 2^x + 2^{-x} }.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Hung Woei Neoh
Jul 10, 2016

Relevant wiki: Exponential Functions - Problem Solving

2 2048 x + 2 2048 x = 2 2 2048 x + 1 2 2048 x = 2 2^{2048x}+2^{-2048x}=2\\ 2^{2048x}+\dfrac{1}{2^{2048x}}=2

Let a = 2 2048 x a=2^{2048x} . Substitute this in:

a + 1 a = 2 a 2 + 1 = 2 a a 2 2 a + 1 = 0 ( a 1 ) 2 = 0 a = 1 2 2048 x = 1 = 2 0 2048 x = 0 x = 0 a+\dfrac{1}{a}=2\\ a^2+1=2a\\ a^2-2a+1=0\\ (a-1)^2=0\\ a=1\\ 2^{2048x}=1=2^0\\ 2048x= 0\\ x=0

Therefore, 2 x + 2 x = 2 0 + 2 0 = 1 + 1 = 2 2^x+2^{-x}=2^0+2^{-0}=1+1=\boxed{2}

Michael Fuller
Jul 21, 2016

Using the AM-GM inequality, 2 2048 x + 1 2 2048 x 2 2 2048 x 2 2048 x 2 2048 x + 1 2 2048 x 2 \large \dfrac{ 2^{2048x}+\dfrac{1}{2^{2048x}} }{2} \le \sqrt{ \dfrac{2^{2048x}}{2^{2048x}} } \, \Rightarrow \, 2^{2048x}+\dfrac{1}{2^{2048x}} \le 2 Equality occurs when 2 2048 x = 1 2 2048 x 2^{2048x} = \dfrac{1}{2^{2048x}} , so 2 2048 x + 1 2 2048 x = 2 2 2048 x = 1 2 2048 x 2 4096 x = 1 x = 0 \large 2^{2048x}+\dfrac{1}{2^{2048x}}=2 \, \Rightarrow \, 2^{2048x} = \dfrac{1}{2^{2048x}} \, \Rightarrow \, 2^{4096x}=1 \, \Rightarrow \, x=0 Thus 2 x + 2 x = 2 0 + 2 0 = 2 2^x+2^{-x}=2^0+2^{-0}=\large \color{#20A900}{\boxed{2}} .

Goh Choon Aik
Jul 10, 2016

2 2048 x + 2 2048 x = 2 2^{2048x} + 2^{-2048x} = 2

2 2048 x + 2 2048 x × 1 = 2 2^{2048x} + 2^{2048x \times - 1} = 2

2 2048 x + 1 2 2048 x = 2 2^{2048x} + \frac {1}{ 2^{2048x}} = 2

We can see that we need to equate a large exponent to that of 2 1 2^1 .

In order to do so, the variable x x must be very small such that the left hand side will equate to the right.

The only value of x x is 0 as 2 1 = 2 0 + 2 0 2^1 = 2^0 + 2^0

Hence the value of 2 x + 2 x = 2 2^x +2^{-x} = 2

Typo: First line, 2 2048 x 2^{2048x}

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

ahh. fixed it

Goh Choon Aik - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...