Look Close!

Algebra Level 3

If a , b , c , d a,b,c,d are positive real numbers , such that a + 2 b + 3 c + 4 d 30 a + 2b + 3c + 4d \ge 30 , then enter the minimum value of the following expression a 2 + b 2 + c 2 + d 2 \Large a^2 + b^2 + c^2 + d^2


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

a 2 + b 2 + c 2 + d 2 = ( a 2 + 1 ) + ( b 2 + 4 ) + ( c 2 + 9 ) + ( d 2 + 16 ) 30 a^2+b^2+c^2+d^2=(a^2+1)+(b^2+4)+(c^2+9)+(d^2+16)-30

Using AM GM inequality inside the brackets

a 2 + b 2 + c 2 + d 2 2 a + 4 b + 6 c + 8 c 30 a^2+b^2+c^2+d^2 \ge 2a+4b+6c+8c-30

Given that,

2 a + 4 b + 6 c + 8 c 60 2a+4b+6c+8c\ge 60

So,

a 2 + b 2 + c 2 + d 2 60 30 a^2+b^2+c^2+d^2 \ge 60-30

a 2 + b 2 + c 2 + d 2 30 a^2+b^2+c^2+d^2 \ge 30

Equality occurs when a = 1 a=1 , b = 2 b=2 , c = 3 c=3 and d = 4 d=4 .

perfect solution !(+1)

Rishu Jaar - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...