A calculus problem by Rohith M.Athreya

Calculus Level 3

There is a common integration trick when evaluating indefinite integrals , namely, e x ( f ( x ) + f ( x ) ) d x = e x f ( x ) + C \displaystyle \int e^{x} \left( f(x)+f^{'}(x) \right) \, dx = e^{x}f(x)+C .

Hence, or otherwise, calculate

0 1 e x ( 256 x 15 x 17 x 16 ) d x . \large \int _{0}^{1} e^{x}\left(256x^{15}-x^{17}-x^{16}\right) \, dx .

Clarification: C C denotes the arbitrary constant of integration .


If you are looking for more such twisted questions, Twisted problems for JEE aspirants is for you!
9 + 8 e 9+8e e -e 15 e 15e 8 e 8e 5 e 5e

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rohith M.Athreya
Jan 31, 2017

e x [ 256 x 15 x 17 x 16 ] d x = e x [ 256 x 15 + 16 x 16 x 17 17 x 16 ] d x = x 16 e x ( x 16 ) + c \displaystyle \large \int e^{x}[256x^{15}-x^{17}-x^{16}]dx=\int e^{x}[256x^{15}+16x^{16}-x^{17}-17x^{16}]dx=-x^{16}e^{x}(x-16)+c

You have missed d x dx at the back.

Chew-Seong Cheong - 4 years, 4 months ago

Log in to reply

ah yes! added it

thanks :)

Rohith M.Athreya - 4 years, 4 months ago

Let f ( x ) = a x 17 + b x 16 f(x) = ax^{17} + bx^{16} , then f ( x ) = 17 a x 16 + 16 b x 15 f'(x) = 17ax^{16} + 16bx^{15} ; and:

f ( x ) + f ( x ) = 265 x 15 x 17 x 16 a x 17 + b x 16 + 17 a x 16 + 16 b x 15 = 265 x 15 x 17 x 16 a x 17 + ( b + 17 a ) x 16 + 16 b x 15 = 265 x 15 x 17 x 16 \begin{aligned} f(x) + f'(x) & = 265x^{15} - x^{17} - x^{16} \\ ax^{17} + bx^{16} + 17ax^{16} + 16bx^{15} & = 265x^{15} - x^{17} - x^{16} \\ ax^{17} + (b + 17a) x^{16} + 16bx^{15} & = 265x^{15} - x^{17} - x^{16} \end{aligned}

Equating the coefficients on both sides, we get a = 1 a=-1 and b = 16 b=16 . Therefore, f ( x ) = 16 x 16 x 17 f(x) = 16x^{16}-x^{17} and we have:

0 1 e x ( 256 x 15 x 17 x 16 ) d x = e x ( 16 x 16 x 17 ) 0 1 = e ( 16 1 ) = 15 e \begin{aligned} \int_0^1 e^x\left(256x^{15} - x^{17} - x^{16} \right) dx & = e^x \left(16x^{16}-x^{17}\right)\bigg|_0^1 \\ & = e(16-1) = \boxed{15e} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...