Look familiar? (My seventeenth integral problem)

Calculus Level 5

0 1 1 x 3 1 + x 3 d x \large \displaystyle \int_{0}^{1} \dfrac{1-x^{3}}{1+x^{3}} \, dx

If the above integral can be expressed in the form

a + b π c d + f ln 2 g -a + \dfrac{b \pi \sqrt{c}}{d} + \dfrac{f\ln 2}{g}

where a , b , c , d , f , g a, b, c, d, f, g are positive integers and gcd ( b , d ) = gcd ( f , g ) = 1 \gcd(b, d)=\gcd(f, g)= 1 , find a + b + c + d + f + g a+b+c+d+f+g .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Feb 27, 2016

I = 0 1 ( 1 + x 3 1 x 3 ) d x = 0 1 ( 1 + 2 1 + x 3 ) d x \mathfrak{I}=\int_0^1(\dfrac{1+x^3}{1-x^3})dx=\int_0^1(-1+\dfrac{2}{1+x^3})dx S = 0 1 ( 1 1 + x 3 ) d x \mathfrak{S}=\int_0^1 (\dfrac{1}{1+x^3})dx = 1 3 0 1 ( 1 1 + x + 1 2 ( 2 x + 1 x 2 x + 1 + 3 x 2 x + 1 ) ) d x =\dfrac{1}{3}\int_0^1(\dfrac{1}{1+x}+\frac{1}{2}(\dfrac{-2x+1}{x^2-x+1}+\dfrac{3}{x^2-x+1}))dx See this for Integration using Partial fractions = 1 3 ( ln ( 1 + x ) 1 2 ( ln ( x 2 x + 1 ) + 2 3 ( tan 1 ( 2 x 1 3 ) ) ) 0 1 =\dfrac 13(\ln(1+x)-\frac 12(\ln (x^2-x+1)+2\sqrt 3(\tan^{-1}(\dfrac{2x-1}{\sqrt 3})))|_0^1 = 1 3 ln 2 + π 3 9 =\dfrac 13 \ln 2+\dfrac{\pi\sqrt 3}{9} Hence, I = 1 + 2 S \mathfrak I=-1+2\mathfrak S = 1 + 2 3 ln 2 + 2 π 3 9 \large =-1+\dfrac 23 \ln 2+\dfrac{2\pi\sqrt 3}{9} 1 + 2 + 3 + 9 + 2 + 3 = 20 \therefore 1+2+3+9+2+3=\huge\boxed{20}

how to simplify 3 x 2 x + 1 \dx \dfrac{3}{x^2-x+1}\dx ?

Anik Mandal - 5 years, 3 months ago

Log in to reply

3 x 2 x + 1 = 3 ( x 1 2 ) 2 + 3 4 \dfrac{3}{x^2-x+1}=\dfrac{3}{(x-\frac 12)^2+\frac 34} And then use : d x x 2 + a 2 = 1 a ( tan 1 x a ) \int \dfrac{dx}{x^2+a^2}=\dfrac 1a (\tan^{-1}\frac xa) and apply appropriate limits.

Rishabh Jain - 5 years, 3 months ago

Log in to reply

Thanks for the explanation

Anik Mandal - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...