Look familiar?

Calculus Level 2

lim n ( 1 2 3 n ) 6 n \large \lim_{n \to\ \infty} \bigg(1 - \frac{2}{3n} \bigg)^{6n}

Evaluate the limit above.

e 4 \displaystyle e^{- 4} 1 1 e e π \displaystyle \pi 0 0 e 2 \displaystyle e^2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zach Abueg
Apr 15, 2017

Let 1 m = 2 3 n \displaystyle \frac 1m = - \frac {2}{3n} .

lim n ( 1 2 3 n ) 6 n = lim m ( 1 + 1 m ) 4 m = e 4 \displaystyle \lim_{n\ \to\ \infty} \bigg(1 - \frac{2}{3n} \bigg)^{6n} = \lim_{m\ \to\ \infty} \bigg(1 + \frac{1}{m} \bigg)^{- 4m} = e^{- 4}

Jaydee Lucero
Jun 29, 2017

Let x = lim n ( 1 2 3 n ) 6 n x=\lim_{n\rightarrow \infty} \left( 1 - \frac{2}{3n} \right)^{6n} The limit at this point is indeterminate of the form 1 1^\infty . Taking ln \ln of both sides we obtain ln x = lim n ( 6 n ln ( 1 2 3 n ) ) \ln x = \lim_{n\rightarrow \infty} \left(6n \ln \left( 1 - \frac{2}{3n} \right)\right) The limit at this point is indeterminate of the form 0 \infty\cdot 0 . We bring down 6 n 6n to the denominator, so that ln x = lim n ln ( 1 2 3 n ) 1 6 n \ln x = \lim_{n\rightarrow \infty} \frac{\ln \left( 1 - \dfrac{2}{3n} \right)}{\dfrac{1}{6n}} Now, the limit at this point is indeterminate of the form 0 0 \dfrac{0}{0} . We can now apply l'Hopital's rule once, and obtain ln x = L H R lim n f ( x ) g ( x ) = lim n 1 1 2 3 n 2 3 n 2 1 6 n 2 = lim n 2 3 n 2 2 n 1 6 n 2 = lim n 12 n 2 3 n 2 2 n = lim n 12 3 2 n = 12 3 0 = 4 \ln x \stackrel{\mathrm{LHR}}{=} \lim_{n\rightarrow \infty} \frac{f'(x)}{g'(x)}=\lim_{n\rightarrow \infty}\frac{ \dfrac{1}{1-\dfrac{2}{3n}}\cdot \dfrac{2}{3n^2} }{-\dfrac{1}{6n^2}} = \lim_{n\rightarrow \infty} \frac{\dfrac{2}{3n^2 - 2n}}{-\dfrac{1}{6n^2}} =\lim_{n\rightarrow \infty} \frac{-12n^2}{3n^2 - 2n} = \lim_{n\rightarrow \infty} \frac{-12}{3 - \dfrac{2}{n}} = \frac{-12}{3-0}= -4 Therefore ln x = 4 \ln x=-4 , and x = e 4 \boxed{x=e^{-4}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...