Look for a tinge of familiar

Calculus Level 4

x = 1 ( 1 ) x + 1 ( 5 x + 24 ) x 2 = ln ( A e B π C ) \sum _{ x=1 }^{ \infty }{ \frac { { \left( -1 \right) }^{ x+1 }\left( 5x+24 \right) }{ { x }^{ 2 } } } =\ln { \left( A{ e }^{ B{ \pi }^{ C } } \right) }

and if A A , B B and C C are integers,

find A + B + C A+B+C


The answer is 36.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

S = n = 1 ( 1 ) n + 1 ( 5 n + 24 ) n 2 = 5 n = 1 ( 1 ) n + 1 n + 24 n = 1 ( 1 ) n + 1 n 2 As ln ( 1 + x ) = n = 1 ( 1 ) n + 1 x n n = 5 ln 2 + 24 ( n = 1 1 n 2 2 2 2 n = 1 1 n 2 ) Basel problem: n = 1 1 n 2 = ζ ( 2 ) = π 2 6 = 5 ln 2 + 12 ( π 2 6 ) = 5 ln 2 + 2 π 2 = ln ( 32 e 2 π 2 ) \begin{aligned} S & = \sum_{n=1}^\infty \frac{(-1)^{n+1}(5n+24)}{n^2} \\ & = 5 \color{#3D99F6} {\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n}} + 24 \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n^2} \quad \quad \small \color{#3D99F6}{\text{As } \ln (1+x) = \sum_{n=1}^\infty \frac{(-1)^{n+1}x^n}{n}} \\ & = 5\color{#3D99F6}{\ln 2} + 24\left(\color{#D61F06}{ \sum_ {n=1}^\infty \frac{1}{n^2}} - \frac{2}{2^2} \color{#D61F06}{ \sum_ {n=1}^\infty \frac{1}{n^2}} \right) \quad \quad \small \color{#D61F06}{\text{Basel problem: }\sum_ {n=1}^\infty \frac{1}{n^2} = \zeta(2) = \frac{\pi^2}{6}} \\ & = 5 \ln 2 + 12 \left(\color{#D61F06}{\frac{\pi^2}{6}}\right) \\ & = 5 \ln 2 + 2\pi^2 \\ & = \ln \left(32e^{2\pi^2}\right) \end{aligned}

A + B + C = 32 + 2 + 2 = 36 \Rightarrow A+B+C = 32+2+2 = \boxed{36}

"Same solution!! ". This is the comment I have been posting from my last 10 questions . The approach i guess turns out to be same as i tend write it. Nevertheless, "same solution"

Aakash Khandelwal - 5 years, 3 months ago

Intended Solution +1!

Joel Yip - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...