Looking at old things in new ways!

Calculus Level 5

{ f ( x ) = 2 + 6 x + 12 x 2 + 20 x 3 + 30 x 4 + + n ( n + 1 ) x n 1 + . . . g ( x ) = 1 f ( x ) + 1 f ( x ) + 1 f ( x ) + 1 f ( x ) + \large \begin{cases} f(x)=2+6x+12x^{2}+20x^{3}+30x^{4}+\cdots+ n(n+1) x^{n-1}+...\\ g(x)= \dfrac{1}{f(x)}+\dfrac{1}{f^{'}(x)}+\dfrac{1}{f^{''}(x)}+\dfrac{1}{f^{'''}(x)}+\cdots\end{cases}

Functions f ( x ) f(x) and g ( x ) g(x) are defined as above for 1 < x < 1 -1<x<1 . If g ( 1 3 ) = 2 9 ( 3 e 2 3 α ) g \left(\frac 13 \right)= \dfrac 29 \left(3e^{\frac{2}{3}}-\alpha\right) , find 2 α 2\alpha .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rohith M.Athreya
Dec 29, 2016

Firstly,

1 + x + x 2 + x 3 + . . . = 1 1 x ; 1 < x < 1 \large \displaystyle 1+x+x^{2}+x^{3}+... \infty = \frac{1}{1-x} ; -1<x<1

diffrentiating both sides wrt x \large \displaystyle x , twice,

2 ! ( 1 x ) 3 = f ( x ) \large \displaystyle \frac{2!}{(1-x)^{3}} = f(x)

f ( x ) = 3 ! ( 1 x ) 4 \large \displaystyle f^{'}(x) = \frac{3!}{(1-x)^{4}}

d r f ( x ) d x r = ( r + 2 ) ! ( 1 x ) r + 3 \large \displaystyle \frac{d^{r}f(x)}{dx^{r}}=\frac{(r+2)!}{(1-x)^{r+3}}

it is evident that the sum 1 f ( x ) + 1 f ( x ) + 1 f ( x ) + 1 f ( x ) + . . . \large \displaystyle \frac{1}{f(x)}+\frac{1}{f^{'}(x)}+\frac{1}{f^{''}(x)}+\frac{1}{f^{'''}(x)}+... \infty is Taylor's series expansion for ( 1 x ) [ e 1 x ( 1 x ) 1 ] \large \displaystyle (1-x)[e^{1-x}-(1-x)-1]

g ( 1 3 ) = 2 9 [ 3 e 2 3 5 ] \large \displaystyle g(\frac{1}{3}) = \frac{2}{9}[3e^{\frac{2}{3}}-5]

i am the first one to get it correct !

A Former Brilliant Member - 4 years, 5 months ago

Log in to reply

Yeah bingo!! :)

Rohith M.Athreya - 4 years, 5 months ago

Nice problem! I solved it the same way (+1)

Sumanth R Hegde - 4 years, 5 months ago

Log in to reply

thanks! :)

Rohith M.Athreya - 4 years, 5 months ago

Nice one bro

Anirudh Chandramouli - 4 years, 5 months ago

Log in to reply

thanks! :)

Rohith M.Athreya - 4 years, 5 months ago

f ( x ) = 2 + 6 x + 12 x 2 + 20 x 3 + 30 x 4 + . . . . . . . . . . . \large f(x)=2+6x+12x^{2}+20x^{3}+30x^{4}+........... , doing some algebraic manipulation, first multiplying by x then 1-x , then x(1-x) st different times in f ( x ) f(x) and then subtracting and adding , we get that f ( x ) \large f(x) = 2 ( 1 x ) 3 \large \displaystyle \frac{2}{(1-x)^{3}} and then differentiate as @Rohith M.Athreya has procedded !

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...