∫ 0 ∞ e x − 1 x d x = b π a
Find the value of a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
+1 nicely written solution! note that this integral is famous in defining the riemann zeta function
∫ e x − 1 x d x ⇒ x lo g ( 1 − e − x ) − Li 2 ( e − x )
The integral is indeterminate at both ends. The integral has limits at both ends.
x → 0 lim ( x lo g ( 1 − e − x ) − Li 2 ( e − x ) ) ⇒ − 6 π 2
x → ∞ lim ( x lo g ( 1 − e − x ) − Li 2 ( e − x ) ) ⇒ 0
This gives the result 6 π 2 .
The answer is 8 .
How'd you evaluate the limits???
Wolfram/Alpha can do it.
"limit of x log(1-e^(-x))-polylog(2,e^(-x)) as x goes to 0" gives − 6 π 2 .
"limit of x log(1-e^(-x))-polylog(2,e^(-x)) as x goes to infinity" gives 0 .
The limit of a sum is the sum of the limits.
x lo g ( 1 − e − x ) = lim x → 0 x 1 ( lo g ( 1 − e − x ) ) = lim x → 0 d x d ( x 1 ) d x d ( 1 − e − x ) lo g = lim x → 0 x 2 ( − 1 ) ( 1 − e − x ) e − x = lim x → 0 e x − 1 ( − x 2 ) = − lim x → 0 d x d ( e x − 1 ) d x d x 2 − lim x → 0 e x ( 2 x ) = 0
Li 2 ( 1 ) = − 6 π 2
Therefore, the overall limit as x goes to 0 is − 6 π 2 .
See the previous argument for the first summand limit, noting that e x goes to infinity fast than 2 x does. Therefore this limit is also 0 .
Li 2 ( 0 ) = 0
Altogether, this gives the final answer of 6 π 2 .
See PolyLog .
∫ 0 ∞ e x − 1 x d x = ∫ 0 ∞ 1 − e − x x e − x d x . Use substitution x = − m . The new integral becomes ∫ 0 − ∞ 1 − e m m e m d m . Use the substitution 1 − e m = u . The new integral then becomes − ∫ 0 1 u ln ( 1 − u ) d u . Note that ln ( 1 − u ) = − ∑ n = 1 ∞ n u n . So this becomes ∫ 0 1 ∑ n = 1 ∞ n u n − 1 d u . Integrating term by term this becomes n 2 u n . The integral then becomes ∑ n = 1 ∞ n 2 1 n − ∑ n = 1 ∞ n 2 0 n , which is simply ∑ n = 1 ∞ n 2 1 = 6 π 2 which gives us the answer of 8
Problem Loading...
Note Loading...
Set Loading...
∫ 0 ∞ e x − 1 x d x ∫ 0 ∞ x e − n x d x ∫ 0 ∞ n = 1 ∑ ∞ x e − n x d x = ∫ 0 ∞ x e − x 1 − e − x 1 d x = ∫ 0 ∞ x e − x n = 0 ∑ ∞ ( e − x ) n d x Note that 0 < e − x < 1 for x > 0 , so this is within the interval of convergence for the sum. = ∫ 0 ∞ n = 0 ∑ ∞ x e − x e − n x d x = ∫ 0 ∞ n = 0 ∑ ∞ x e − ( n + 1 ) x d x = ∫ 0 ∞ n = 1 ∑ ∞ x e − n x d x Consider the integral of a single element of this sum, we can solve using integration by parts: = [ n x e − n x ] 0 ∞ − ∫ 0 ∞ n 1 e − n x d x = ( x → ∞ lim n e n x x ) − 0 − [ n 2 1 e − n x ] 0 ∞ = 0 − ( x → ∞ lim n 2 e n x 1 ) + n 2 1 = − 0 + n 2 1 = n 2 1 Since the integral exists for any n , we can swap the integral and sum: = n = 1 ∑ ∞ ∫ 0 ∞ x e − n x d x = n = 1 ∑ ∞ n 2 1 This famous sum evaluates to 6 π 2 , and so ∫ 0 ∞ e x − 1 x d x = 6 π 2 ■