Looks are deceptive!

Calculus Level 3

0 x e x 1 d x = π a b \int_{0}^{\infty}\frac{x}{e^x-1}dx=\frac{\pi^a}{b}

Find the value of a + b a+b .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Joseph Newton
Jun 10, 2019

0 x e x 1 d x = 0 x e x 1 1 e x d x = 0 x e x n = 0 ( e x ) n d x Note that 0 < e x < 1 for x > 0 , so this is within the interval of convergence for the sum. = 0 n = 0 x e x e n x d x = 0 n = 0 x e ( n + 1 ) x d x = 0 n = 1 x e n x d x Consider the integral of a single element of this sum, we can solve using integration by parts: 0 x e n x d x = [ x n e n x ] 0 0 1 n e n x d x = ( lim x x n e n x ) 0 [ 1 n 2 e n x ] 0 = 0 ( lim x 1 n 2 e n x ) + 1 n 2 = 0 + 1 n 2 = 1 n 2 Since the integral exists for any n , we can swap the integral and sum: 0 n = 1 x e n x d x = n = 1 0 x e n x d x = n = 1 1 n 2 This famous sum evaluates to π 2 6 , and so 0 x e x 1 d x = π 2 6 \begin{aligned}\int_0^\infty \frac x{e^x-1}dx &=\int_0^\infty {xe^{-x}}\frac1{1-e^{-x}}dx\\ &=\int_0^\infty {xe^{-x}}\sum_{n=0}^\infty \left(e^{-x}\right)^n\ dx\\ &\text{Note that }0<e^{-x}<1\text{ for }x>0\text{, so this is within the interval of convergence for the sum.}\\ &=\int_0^\infty \sum_{n=0}^\infty xe^{-x}e^{-nx}\ dx\\ &=\int_0^\infty \sum_{n=0}^\infty xe^{-(n+1)x}dx\\ &=\int_0^\infty \sum_{n=1}^\infty xe^{-nx}dx\\ &\text{Consider the integral of a single element of this sum, we can solve using integration by parts:}\\ \int_0^\infty xe^{-nx}dx &=\left[\frac xne^{-nx}\right]_0^\infty\ \ -\ \ \int_0^\infty \frac 1ne^{-nx}dx\\ &=\left(\lim_{x\to\infty} \frac x{ne^{nx}}\right) -0\ \ -\ \ \left[\frac1{n^2}e^{-nx}\right]_0^\infty\\ &=0\ \ -\ \ \left(\lim_{x\to\infty} \frac1{n^2e^{nx}}\right) + \frac1{n^2}\\ &=-0+\frac1{n^2}=\frac1{n^2}\\ &\text{Since the integral exists for any }n\text{, we can swap the integral and sum:}\\ \int_0^\infty \sum_{n=1}^\infty xe^{-nx}dx &=\sum_{n=1}^\infty \int_0^\infty xe^{-nx}dx\\ &=\sum_{n=1}^\infty \frac1{n^2}\\ &\text{This famous sum evaluates to }\frac{\pi^2}6\text{, and so}\\ &\int_0^\infty \frac x{e^x-1}dx =\frac{\pi^2}6\qquad\blacksquare\end{aligned}

+1 nicely written solution! note that this integral is famous in defining the riemann zeta function

Aareyan Manzoor - 1 year, 12 months ago

x e x 1 d x x log ( 1 e x ) Li 2 ( e x ) \int \frac{x}{e^x-1} \, dx\Rightarrow x \log \left(1-e^{-x}\right)-\text{Li}_2\left(e^{-x}\right)

The integral is indeterminate at both ends. The integral has limits at both ends.

lim x 0 ( x log ( 1 e x ) Li 2 ( e x ) ) π 2 6 \underset{x\to 0}{\text{lim}}\left(x \log \left(1-e^{-x}\right)-\text{Li}_2\left(e^{-x}\right)\right) \Rightarrow -\frac{\pi ^2}{6}

lim x ( x log ( 1 e x ) Li 2 ( e x ) ) 0 \underset{x\to \infty }{\text{lim}}\left(x \log \left(1-e^{-x}\right)-\text{Li}_2\left(e^{-x}\right)\right) \Rightarrow 0

This gives the result π 2 6 \frac{\pi ^2}{6} .

The answer is 8 8 .

How'd you evaluate the limits???

Aaghaz Mahajan - 1 year, 12 months ago

Wolfram/Alpha can do it.

"limit of x log(1-e^(-x))-polylog(2,e^(-x)) as x goes to 0" gives π 2 6 -\frac{\pi^2}{6} .

"limit of x log(1-e^(-x))-polylog(2,e^(-x)) as x goes to infinity" gives 0 0 .

The limit of a sum is the sum of the limits.

x log ( 1 e x ) = lim x 0 ( log ( 1 e x ) ) 1 x = lim x 0 d d x ( 1 e x ) log d d x ( 1 x ) = lim x 0 e x ( 1 ) ( 1 e x ) x 2 = lim x 0 ( x 2 ) e x 1 = lim x 0 d d x x 2 d d x ( e x 1 ) lim x 0 ( 2 x ) e x = 0 x \log \left(1-e^{-x}\right) = \\ \lim_{x\to 0}\,\frac{\left(\log \left(1-e^{-x}\right)\right)}{\frac{1}{x}} = \\ \lim_{x\to 0}\,\frac{\frac{d}{dx}\left(1-e^{-x}\right) \log }{\frac{d}{dx}\left(\frac{1}{x}\right)} = \\ \lim_{x\to 0}\,\frac{e^{-x}}{\frac{(-1) \left(1-e^{-x}\right)}{x^2}} = \\ \lim_{x\to 0}\,\frac{\left(-x^2\right)}{e^x-1} = \\ -\lim_{x\to 0}\,\frac{\frac{d}{dx}x^2}{\frac{d}{dx}\left(e^x-1\right)} -\lim_{x\to 0}\,\frac{(2 x)}{e^x} = 0

Li 2 ( 1 ) = π 2 6 \text{Li}_2(1) = -\frac{\pi ^2}{6}

Therefore, the overall limit as x goes to 0 is π 2 6 -\frac{\pi ^2}{6} .

See the previous argument for the first summand limit, noting that e x e^x goes to infinity fast than 2 x 2x does. Therefore this limit is also 0 0 .

Li 2 ( 0 ) = 0 \text{Li}_2(0) = 0

Altogether, this gives the final answer of π 2 6 \frac{\pi ^2}{6} .

See PolyLog .

A Former Brilliant Member - 1 year, 12 months ago
Roni Edwin
Jun 17, 2019

0 x e x 1 d x = 0 x e x 1 e x d x \int_0^{\infty}\frac{x}{e^x-1}dx=\int_0^{\infty}\frac{xe^{-x}}{1-e^{-x}}dx . Use substitution x = m x=-m . The new integral becomes 0 m e m 1 e m d m \int_0^{-\infty}\frac{me^m}{1-e^m}dm . Use the substitution 1 e m = u 1-e^m=u . The new integral then becomes 0 1 ln ( 1 u ) u d u -\int_0^1\frac{\ln\left(1-u\right)}{u}du . Note that ln ( 1 u ) = n = 1 u n n \ln\left(1-u\right)\ =\ -\sum_{n=1}^{\infty}\frac{u^n}{n} . So this becomes 0 1 n = 1 u n 1 n d u \int_0^1\sum_{n=1}^{\infty}\frac{u^{n-1}}{n}du . Integrating term by term this becomes u n n 2 \frac{u^n}{n^2} . The integral then becomes n = 1 1 n n 2 n = 1 0 n n 2 \sum_{n=1}^{\infty}\frac{1^n}{n^2}-\sum_{n=1}^{\infty}\frac{0^n}{n^2} , which is simply n = 1 1 n 2 = π 2 6 \sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6} which gives us the answer of 8 8

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...