Looks Are Very Deceptive (Fixed)

Calculus Level 2

0 π 2 tan x 5 d x = π a sin b π c \int_0^\frac \pi 2 \sqrt[5]{\tan x} \ dx=\frac \pi {a\sin \frac { b\pi }c}

The equation above is true for positive integers a a , b b , and c c . Find the minimum value of ( a + b + c ) 2 { (a+b+c) }^{ 2 } .


The answer is 81.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

0 π 2 tan x 5 d x = 0 π 2 sin 1 5 x cos 1 5 x d x Beta function B ( m , n ) = 2 0 π 2 sin 2 m 1 x cos 2 n 1 x d x = B ( 3 5 , 2 5 ) 2 B ( m , n ) = Γ ( m ) Γ ( n ) Γ ( m + n ) , Γ ( ) denotes gamma function. = Γ ( 3 5 ) Γ ( 2 5 ) 2 Γ ( 1 ) Γ ( n ) = ( n 1 ) ! = Γ ( 1 2 5 ) Γ ( 2 5 ) 2 Γ ( 1 z ) = z Γ ( z ) = Γ ( 2 5 ) Γ ( 2 5 ) 5 Γ ( z ) Γ ( z ) = π z sin z π = π 2 sin 2 π 5 \begin{aligned} \int_0^\frac \pi 2 \sqrt[5]{\tan x} \ dx & = \int_0^\frac \pi 2 \sin^\frac 15 x \cos^{-\frac 15} x \ dx & \small \blue{\text{Beta function B}\left(m,n\right) = 2\int_0^\frac \pi 2 \sin^{2m-1}x \cos^{2n-1}x\ dx} \\ & = \frac {\text B \left(\frac 35, \frac 25 \right)}2 & \small \blue{\text B(m,n) = \frac {\Gamma(m)\Gamma(n)}{\Gamma(m+n)}, \Gamma(\cdot) \text{ denotes gamma function.}} \\ & = \frac {\Gamma \left(\frac 35 \right)\Gamma \left(\frac 25 \right)}{2 \blue{\Gamma (1)}} & \small \blue{\Gamma(n) = (n-1)!} \\ & = \frac {\blue{\Gamma \left(1-\frac 25 \right)}\Gamma \left(\frac 25 \right)}2 & \small \blue{\Gamma(1-z) = -z\Gamma (-z)} \\ & = - \frac {\blue{\Gamma \left(-\frac 25 \right) \Gamma \left(\frac 25 \right)}}5 & \small \blue{\Gamma(z)\Gamma (-z)= - \frac \pi{z\sin z\pi}} \\ & = \frac \pi {2\sin \frac {2\pi}5} \end{aligned}

Therefore ( a + b + c ) 2 = ( 2 + 2 + 5 ) 2 = 81 (a+b+c)^2 = (2+2+5)^2 = \boxed{81} .


References :

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...