Looks big?

Algebra Level 3

( 1 x ) ( 1 + x + x 2 + x 3 + x 4 ) = 31 32 (1-x)(1+x+x^2+x^3+x^4)=\dfrac{31}{32}

Given that x x is a rational number satisfying the equation above, find 1 + x + x 2 + x 3 + x 4 + x 5 1+x+x^2+x^3+x^4+x^5 .

63 32 \frac{63}{32} 31 64 \frac{31}{64} 31 32 \frac{31}{32} 63 64 \frac{63}{64}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hung Woei Neoh
Jun 24, 2016

( 1 x ) ( 1 + x + x 2 + x 3 + x 4 ) = 31 32 1 x + x x 2 + x 2 x 3 + x 3 x 4 + x 4 x 5 = 31 32 1 x 5 = 31 32 x 5 = 32 32 31 32 = 1 32 x = 1 32 5 = 1 2 (1-x)(1+x+x^2+x^3+x^4) = \dfrac{31}{32}\\ 1\color{#3D99F6}{-x+x}\color{#D61F06}{-x^2+x^2}\color{#20A900}{-x^3+x^3}\color{#EC7300}{-x^4+x^4}-x^5 = \dfrac{31}{32}\\ 1-x^5=\dfrac{31}{32}\\ x^5 = \dfrac{32}{32} - \dfrac{31}{32} = \dfrac{1}{32}\\ x = \sqrt[5]{\dfrac{1}{32}} = \dfrac{1}{2}

Substitute the value of x x into the equation:

( 1 1 2 ) ( 1 + x + x 2 + x 3 + x 4 ) = 31 32 1 2 ( 1 + x + x 2 + x 3 + x 4 ) = 31 32 1 + x + x 2 + x 3 + x 4 = 62 32 (1-\dfrac{1}{2})(1+x+x^2+x^3+x^4) = \dfrac{31}{32}\\ \dfrac{1}{2}(1+x+x^2+x^3+x^4) = \dfrac{31}{32}\\ 1+x+x^2+x^3+x^4 = \dfrac{62}{32}

Add x 5 x^5 into the equation:

1 + x + x 2 + x 3 + x 4 + x 5 = 62 32 + 1 32 = 63 32 1+x+x^2+x^3+x^4+x^5 = \dfrac{62}{32}+\dfrac{1}{32} = \boxed{\dfrac{63}{32}}

Nice solution. +1

A Former Brilliant Member - 4 years, 11 months ago

Nice solution.. but instead of multiplying the brackets, you can use 1 + x + x 2 + x 3 + x 4 = 1 x 5 1 x \text{Nice solution.. but instead of multiplying the brackets, you can use } \\ 1+x+x^2+x^3+x^4 = \dfrac{1-x^5}{1-x}

Sabhrant Sachan - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...