Can We Partition These Limits?

Calculus Level 3

lim n ( 1 + 2 + + n ) ( 1 1 + 1 2 + + 1 n ) 1 + 2 + + n = ? \lim_{n\to \infty} \dfrac{\left(\sqrt1 +\sqrt2 + \cdots +\sqrt n \right) \left( \frac1{\sqrt 1} + \frac1{\sqrt 2} + \cdots + \frac1{\sqrt n} \right)}{1+2+\cdots +n} = \, ?

2 2 3 3 8 3 \frac83 7 3 \frac73

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Feb 27, 2016

Let's multiply the expression by 1 n 1 n 1 n \dfrac{\frac1{\sqrt n} \cdot \frac1{\sqrt n} }{\frac1n} , we have

( 1 n + 2 n + + n n ) ( 1 1 n + 1 2 n + + 1 n n ) 1 n + 2 n + + n n \dfrac{\left(\sqrt{ \frac1n} +\sqrt{ \frac2n} + \cdots +\sqrt { \frac nn} \right) \left( \frac1{\sqrt {1n}} + \frac1{\sqrt {2n}} + \cdots + \frac1{\sqrt {n\cdot n}} \right)}{\frac1n + \frac2n + \cdots + \frac nn}

Let A n A_n and B n B_n denote the expressions, respectively, inside the first and second brackets in the numerator of the fraction above. Similarly, let C n C_n denote the expression in the denominator of the fraction above.

So we want to evaluate lim n A n B n C n \displaystyle \lim_{n\to\infty} \dfrac{A_n B_n}{C_n} , and if the limits A n , B n , C n A_n ,B_n, C_n are all finite values, then lim n A n B n C n = ( lim n A n ) × ( lim n B n ) ÷ ( lim n C n ) \displaystyle \lim_{n\to\infty} \dfrac{A_n B_n}{C_n} = \displaystyle (\lim_{n\to\infty} A_n) \times (\lim_{n\to\infty}B_n) \div(\lim_{n\to\infty} C_n) is true.

Let's evaluate the limits of A n , B n A_n,B_n and C n C_n separately.

Since A n , B n A_n, B_n and C n C_n can be expressed in the form of 1 n r = 1 f ( r n ) \displaystyle \dfrac1n \sum_{r=1}^\infty f\left( \dfrac rn\right) for some function f ( x ) f(x) , then we can evaluate all these limits by Riemann sums .

Thus,
lim n A n = lim n ( 1 n + 2 n + + n n ) = 0 1 x 1 / 2 d x = 1 1 + 1 2 x 3 / 2 x = 0 x = 1 = 2 3 \displaystyle \lim_{n\to\infty}A_n = \lim_{n\to\infty} \left(\sqrt{ \frac1n} +\sqrt{ \frac2n} + \cdots +\sqrt { \frac nn} \right) = \int_0^1 x^{1/2} \, dx = \dfrac1{1 + \frac12} x^{3/2} \bigg |_{x=0}^{x=1} = \dfrac23 .
lim n B n = lim n ( 1 1 n + 1 2 n + + 1 n n ) = 0 1 x 1 / 2 d x = 1 1 1 2 x 1 / 2 x = 0 x = 1 = 2 \displaystyle \lim_{n\to\infty}B_n = \lim_{n\to\infty} \left( \frac1{\sqrt {1n}} + \frac1{\sqrt {2n}} + \cdots + \frac1{\sqrt {n\cdot n}} \right) = \int_0^1 x^{-1/2} \, dx = \dfrac1{1 - \frac12} x^{1/2} \bigg |_{x=0}^{x=1} = 2 .
lim n C n = lim n ( 1 n + 2 n + + n n ) = 0 1 x d x = 1 1 + 1 x 2 x = 0 x = 1 = 1 2 \displaystyle \lim_{n\to\infty}C_n = \lim_{n\to\infty} \left( \frac1n + \frac2n + \cdots + \frac nn \right) = \int_0^1 x\, dx = \dfrac1{1 +1} x^{2} \bigg |_{x=0}^{x=1} = \dfrac12 .

Since we have shown that the limits A n , B n , C n A_n ,B_n, C_n are all non-zero finite values, then lim n A n B n C n = ( lim n A n ) × ( lim n B n ) ÷ ( lim n C n ) \displaystyle \lim_{n\to\infty} \dfrac{A_n B_n}{C_n} = \displaystyle (\lim_{n\to\infty} A_n) \times (\lim_{n\to\infty}B_n) \div(\lim_{n\to\infty} C_n) is indeed true.

Hence our answer is just 2 3 2 1 2 = 8 3 \dfrac{\frac23 \cdot 2}{\frac12} =\boxed{{\dfrac83}} .

How does f ( r n ) f(\dfrac{r}{n}) come and how do we convert the sum into integration? @Rishabh Cool

Anik Mandal - 4 years, 10 months ago

Log in to reply

hat's why you need to read the page of Reimann sums mentioned in the solution...

Rishabh Jain - 4 years, 10 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...